Skip to main content

Abstract

In the animal kingdom there are four types of O2-binding (respiratory) pigment with different structures but very similar functional properties. They have characteristic colours in their oxygenated states and the absorption spectra of the pigments with bound O2 or another ligand, such as CO or CN, are used for purposes of identification (Table 7.1). The structures of the binding sites vary (Fig. 7.1): the prosthetic group of the globins is protohaem, i.e. Fe(II)-protoporphyring (Fig. 7.2), which can bind one ligand. Chlorocruorin is also a haemoprotein but with a haem component (spirographis haem) which differs from protohaem in one substituent (Fig. 7.2). In the copper protein haemocyanin and the iron protein haemerythrin, the binding site in each case contains two metal atoms (Fig. 7.1). Chlorocruorins and haemocyanins are always found dissolved in the blood plasma; haemerythrins occur only intracellularly, and haemoglobins are both intra-and extracellular (Table 7.2). The intracellular respiratory pigments consistently have molecular masses under 100 kDA and only one to eight O2-binding sites per molecule. Most of the extracellular blood pigments have far larger molecular masses of up to several million kDA and often more than 100 O2-binding sites; in this way, the colloid osmotic effects in the blood plasma are reduced. There are, however, some exceptions to this rule, e.g. the extracellular haemoglobins of chironomid larvae are only 16–32 kDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi A. and Braunitzer G.: The primary structure of hemoglobins from the domestic cat (Felis catus, Felidae). Biol. Chem. Hoppe-Seyler 366: 699–704 (1985)

    PubMed  CAS  Google Scholar 

  2. Abbasi A. et al.: Molecular basis for ATP/2,3bisphosphoglycerate control switch-over (poikilotherm/homeotherm): An intermediate amino-acid sequence in the hemoglobin of the great Indian rhinoceros (Rhinoceros unicornis, Perissodactyla). Biol. Chem. Hoppe-Seyler 368: 323–332 (1987)

    PubMed  CAS  Google Scholar 

  3. Arents G. and Love W. E.: Glycera dibranchiata hemoglobin. Structure and refinement at 1.5 A resolution. J. mol. Biol. 210: 149–161 (1989)

    PubMed  CAS  Google Scholar 

  4. Aschauer H., Weber R. E. and Braunitzer G.: The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias). Antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biol. Chem. Hoppe-Seyler 366: 589–599 (1985)

    PubMed  CAS  Google Scholar 

  5. Bak H. J. and Beintema J. J.: Panulirus interruptus hemocyanin–The elucidation of the complete amino acid sequence of subunit a. Eur. J. Biochem. 169: 333–348 (1987)

    PubMed  CAS  Google Scholar 

  6. Banville D. and Williams J. G.: The pattern of expression of the Xenopus laevis tadpole a-globin genes and the amino acid sequence of the three major tadpole a-globin polypeptides. Nucleic Acids Res. 13: 5407–21 (1985)

    PubMed  CAS  Google Scholar 

  7. Banville D. and Williams J H.: Developmental changes in the pattern of larval ß-globin gene expression in Xenopus laevis. Identification of two early larval 13-globin mRNA sequences. J. mol. Biol. 184: 611–620 (1985)

    PubMed  CAS  Google Scholar 

  8. Bartlett G. R.: Phosphate compounds in vertebrate red blood cells. Amer. Zool. 20: 103–114 (1980)

    CAS  Google Scholar 

  9. Bashford D., Chothia C. and Lesk A. M.: Determinants of a protein fold. Unique features of the globin amino acid sequences. J. mol. Biol. 196: 199–216 (1987)

    PubMed  CAS  Google Scholar 

  10. Bellelli A. et al.: Haem disorder in two myoglobins: comparison of reorientation rate. Biochem. J. 246: 787–789 (1987)

    PubMed  CAS  Google Scholar 

  11. Bieber E. A. and Braunitzer G.: Prae-and perinatal oxygen transport in mammals: The embryonic hemoglobins of the pig (Sus scrofa domestica). Hoppe-Seyler’s Z. physiol. Chem. 365: 321–334 (1984)

    CAS  Google Scholar 

  12. Bijlholt M. and van Bruggen E. F. J.: A model for the architecture of the hemocyanin from the arthropod Squilla mantis (Crustacea, Stomatopoda). Eur. J. Biochem. 155: 339–344 (1986)

    PubMed  CAS  Google Scholar 

  13. Biswanger H.: Theorie and Methoden der Enzymkinetik. Verlag Chemie, Weinheim 1979

    Google Scholar 

  14. Blanchetot A., Price M. and Jeffreys A. J.: The mouse myoglobin gene–Characterization and sequence comparison with other mammalian myoglobin genes. Eur. J. Biochem. 159: 469–474 (1986)

    PubMed  CAS  Google Scholar 

  15. Bogusz D. et al.: Functioning haemoglobin genes in non-nodulating plants. Nature 331: 178–180 (1988)

    PubMed  CAS  Google Scholar 

  16. Boisset N. et al.: Three-dimensional reconstruction of native Androctonus australis hemocyanin. J. mol. Biol. 216: 743–760 (1990)

    PubMed  CAS  Google Scholar 

  17. Borgese T. A., Harrington J. P. and Hoffman D.: Anadara ovalis hemoglobins: distinct dissociation and ligand binding characteristics. Comp. Biochem. Physiol. Pt. B. 86: 155–165 (1987)

    CAS  Google Scholar 

  18. Borgese T. A. et al.: Haemoglobin properties and polymerization in the marine teleost Lophius americanus (goosefish). Comp. Biochem. Physiol. Pt. B 91: 663–670 (1988)

    Google Scholar 

  19. Braunitzer G. and Hiebl I.: Molecular aspects of high altitude respiration in birds (In German). Naturwissenschaften 75: 280–287 (1988)

    PubMed  CAS  Google Scholar 

  20. Brittain T. and Wells R. M. G.: Characterization of the changes in the state of aggregation induced by ligand binding in the hemoglobin system of a primitive vertebrate, the hagfish Eptatretus cirrhatus. Comp. Biochem. Physiol. Pt. A 85: 785–790 (1986)

    CAS  Google Scholar 

  21. Brittain T.: The Root effect. Comp. Biochem. Physiol. Pt. B 86: 473–481 (1987)

    CAS  Google Scholar 

  22. Brittain T.: Co-operative functioning of the dimeric haemoglobin obtained from the radular muscle of the amphineurian mollusc Amaurochiton glaucus. Comp. Biochem. Physiol. Pt. B 96: 96–295 (1990)

    Google Scholar 

  23. Brix O.: The adaptive significance of the reversed Bohr and Root shifts in blood from the marine gastropod, Buccinum undatum. J. exp. Zool. 221: 27–36 (1982)

    CAS  Google Scholar 

  24. Brix O. et al.: The chloride shift may faciliatate oxygen loading and unloading to/from the hemoglobin from the brown bear (Ursus arctos L.). Comp. Biochem. Physiol. Pt. B 95: 865–868 (1990)

    CAS  Google Scholar 

  25. Brouwer M. and Serigstad B.: Allosteric control in Limulus polyphemus hemocyanin: Function relevance of interactions between hexamers. Biochemistry 28: 8819–27 (1989)

    PubMed  CAS  Google Scholar 

  26. Brunori M. et al.: Is there a Root effect in Xenopus hemoglobin? FEBS Letters 221: 161–166 (1987)

    PubMed  CAS  Google Scholar 

  27. Bunn H. F.: Regulation of hemoglobin function in mammals. Amer. Zool. 20: 199–211 (1980)

    CAS  Google Scholar 

  28. Bunn H. F. and Forget B. G.: Hemoglobin. Molecular, genetic and clinical aspects. Saunders, Washington 1986

    Google Scholar 

  29. Burnett L. E., Scholnick D. A. and Mangum C. P.: Temperature sensitivity of molluscan and arthropod hemocyanins Biol. Bull. 174: 153–162 (1988)

    CAS  Google Scholar 

  30. Cardellini P and Sala M.: Developmental time of the hemoglobin transition in the anuran Bombina orientalis. Comp. Biochem. Physiol. Pt. B 75: 259–262 (1983)

    CAS  Google Scholar 

  31. Chacko V. P. et al.: Proton-magnetic-resonance investigation of the dynamics of the conformational transition in allosteric monomeric insect hemoglobins. Eur. J. Biochem. 161: 375–381 (1986)

    PubMed  CAS  Google Scholar 

  32. Cheng, J. E, Krane D. E. and Hardison R. C.: Nucleotide sequence and expression of rabbit globin genes zeta-1, zeta-2 and zeta-3. Pseudogenes generated by block duplications are transcriptionally competent. J. Biol. Chem. 263: 9981–93 (1988)

    PubMed  CAS  Google Scholar 

  33. Cirotto C. and Arangi I.: Koelliker haemoglobins in developing chick embryo. Comp. Biochem. Physiol. Pt. B 92: 103–109 (1989)

    CAS  Google Scholar 

  34. Clegg J. B.: Gene conversions in the horse a-globin gene complex. Mol. Biol. Evol. 4: 492–503 (1987)

    PubMed  CAS  Google Scholar 

  35. Colacino J. M. and Kraus D. W.: Hemoglobin-containing cells of Neodasys (Gastrotricha, Chaetonotida)–II. Respiratory significance. Comp. Biochem. Physiol. Pt. A 79: 363–369 (1984)

    Google Scholar 

  36. Coletta M. et al.: Ligand-dependent behaviour of the hemoglobin from the ascarid Parascaris equorum. Biochim. biophys. Acta 870: 169–175 (1986)

    CAS  Google Scholar 

  37. Coletta M. et al.: A novel mechanism of heme-heme interaction in the homodimeric hemoglobin from Scapharca inaequivalis as manifested upon cleavage of the proximal Fe-N bond at low pH. J. Biol. Chem. 265: 4828–30 (1990)

    PubMed  CAS  Google Scholar 

  38. Dafré A. L. and F ° D. W.: Root effect hemoglobins in marine fish. Comp. Biochem. Physiol. Pt. A 92: 267–471 (1989)

    Google Scholar 

  39. Darawshe S., Tsafandya Y and Daniel E.: Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem. J. 242: 689–694 (1987)

    PubMed  CAS  Google Scholar 

  40. Decker H. and Sterner R.: Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus). J. mol. Biol. 211: 281–293 (1990)

    PubMed  CAS  Google Scholar 

  41. Douglas E. L. et al.: Myoglobin in the heart tissue of fishes lacking hemoglobin. Comp. Biochem. Physiol. Pt. A 81: 885–888 (1985)

    CAS  Google Scholar 

  42. Drexel R. et al.: Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol. Chem. Hoppe-Seyler 368: 617–635 (1987)

    PubMed  CAS  Google Scholar 

  43. Ellerton H. D., Bearman C. H. and Loong P. C.: Erythrocruorin from the New Zealand earthworm Maoridrilus montanus: a multi-subunit annelid extra-cellular hemoglobin. Comp. Biochem. Physiol. Pt. B 87: 1017–23 (1987)

    Google Scholar 

  44. Fitch D. H. A. et al.: Molecular history of gene conversions in the primate fetal gamma-globin genes. Nucleotide sequences from the common gibbon, Hylobates lar. J. Biol. Chem. 265: 781–793 (1990)

    PubMed  CAS  Google Scholar 

  45. Focesi A. jr., Ogo S. H. and Matsuura M. S. A.: Dimer-tetramer transition in hemoglobins from Liophis miliaris II Evidence with the stripped proteins. Comp. Biochem. Physiol. Pt. B 96: 119–122 (1990)

    Google Scholar 

  46. Garey J. R. and Riggs A. E.: The hemoglobin of Urechis caupo. The cDNA-derived amino acid sequence. J. biol. Chem. 261: 16446–50 (1986)

    PubMed  CAS  Google Scholar 

  47. Garner K. J. and Lingrei J. B.: A comparison of the 13A- and 3B-globin gene clusters of sheep. J. mol. Evol. 28: 175–184 (1989)

    PubMed  CAS  Google Scholar 

  48. Gelissen G., Hennecke R. and Spindler K. D.: The site of synthesis of hemocyanin in the crayfish, Astacus leptodactylus. Experientia 47: 194-/195 (1991)

    Google Scholar 

  49. Giardina B. et al.: Interaction of hemoglobin with chloride and 2,3-bisphophoglycerate: A comparative approach. Eur. J. Biochem. 194: 61–65 (1990)

    PubMed  CAS  Google Scholar 

  50. Gibson Q. H. et al.: Ligand binding in a hierarchy of globin complexes: The hexagonal bilayer hemoglobin of Lumbricus terrestris and its heme-containing subunits. J. Biol. Chem. 266: 13097–102 (1991)

    PubMed  CAS  Google Scholar 

  51. Gielens C. et al.: Identification, separation and characterization of the haemocyanin components of Helix aspersa. Comp. Biochem. Physiol. Pt. B 88: 181–186 (1987)

    Google Scholar 

  52. Gonzalez-Redondo J. M. et al.: Nucleotide sequence of the human theta-1 globin gene. Biochem. Genet. 26: 207–211 (1988)

    PubMed  CAS  Google Scholar 

  53. Goodman M. et al: Amino acid sequence evidence on the phylogeny of primates and other eutherians. In: Goodman M (ed.): Macromolecular sequences in systematics and evolutionary biology, pp. 115–191. Plenum, New York 1982

    Google Scholar 

  54. Goodman M. et al.: The eta-globin gene. Its long evolutionary history in the 13-globin gene family of mammals. J. mol. Biol. 180: 803–823 (1984)

    PubMed  CAS  Google Scholar 

  55. Goodman M. et al.: An evolutionary tree for invertebrate globin sequences. J. mol. Evol. 27: 236–249 (1988)

    PubMed  CAS  Google Scholar 

  56. Gotoh T. and Suzuki T.: Molecular assembly and evolution of multi-subunit extracellular annelid hemoglobins. Zool. Sci. 7: 1–16 (1990)

    CAS  Google Scholar 

  57. Grinich N. R, Terwilliger R. C. and Terwilliger N. B.: Oxygen equilibria and structural characteristics of the tetrameric and polymeric intracellular hemoglobins from the bivalve mollusc Barbatia reeveana. J. comp. Physiol. B 156: 675–682 (1986)

    CAS  Google Scholar 

  58. Hardison R. C. and Gelinas R. E.: Assignment of orthologous relationships among mammalian aglobin genes by examining flanking regions reveals a rapid rate of evolution. Mol. Biol. Evol. 3: 243–261 (1986)

    PubMed  CAS  Google Scholar 

  59. Hardison R. C. et al.: A previously undetected pseudogen in the human alpha globin gene cluster. Nucleic Acids Res. 14: 1903–11 (1986)

    PubMed  CAS  Google Scholar 

  60. Harris S. et al.: Nucleotide sequence analysis of the lemur 3-globin gene family: Evidence for major rate fluctuations in globin polypeptide evolution. Mol. Biol. Evol. 3: 465–484 (1986)

    PubMed  CAS  Google Scholar 

  61. Herskovits T. T. and Hamilton M. G.: The hemoglobin of the aquatic snail, Planorbella duryi (Wetherby). Comp. Biochem. Physiol. Pt. B 95: 321–326 (1990)

    CAS  Google Scholar 

  62. Herskovits T. T. et al: Light-scattering and scanning transmission electron microscopic investigation of the hemocyanin of the bivalve, Yoldia limatula (Say). Comp. Biochem. Physiol. Pt. B 96: 497–503 (1990)

    CAS  Google Scholar 

  63. Herskovits T. T. and Hamilton M. G.: Higher order assemblies of molluscan hemocyanins (Minireview). Comp. Biochem. Physiol. Pt. B 99: 19–34 (1991)

    CAS  Google Scholar 

  64. Hirsch R. E. and Noble R. W.: Intrinsic fluorescence of carp hemoglobin: a study of the R-T-transition. Biochim. biophys. Acta 914: 213–219 (1987)

    CAS  Google Scholar 

  65. Hombrados I. et al.: Primary structure of the minor hemoglobins from the sea lamprey (Petromyzon mar-inns, Cyclostomata). Biol. Chem. Hoppe-Seyler 368: 145–154 (1987)

    PubMed  CAS  Google Scholar 

  66. Honig G. R. and Adams J. G. (eds.): Human hemoglobin genetics. Springer, Wien 1986

    Google Scholar 

  67. Honzatko R. B. and Hendrickson W. A.: Molecular models for the putative dimer of sea lamprey hemoglobin. Proc. Nat. Acad. Sci. USA 83: 8487–91 (1986)

    PubMed  CAS  Google Scholar 

  68. Hsu L. et al.: Structure and expression of the human theta-globin gene. Nature 331: 94–96 (1988)

    PubMed  CAS  Google Scholar 

  69. Huber E. and Brausitzer G.: The primary structure of the hemoglobin of the electric eel (Electrophorus electricus). Biol. Chem. Hoppe-Seyler 370: 245–250 (1989)

    PubMed  CAS  Google Scholar 

  70. Huisman T. H. J.: A comprehensive list of all hemoglobin variants and their references. Hemoglobin 13: 221–323 (1989)

    Google Scholar 

  71. van Iersel A. A. J. and Blaauboer B. J.: NADHferrihemoglobin reductase in avian erythrocytes. Comp. Biochem. Physiol. Pt. B 81: 1027–31 (1985)

    Google Scholar 

  72. di Iorio E. E. et al.: Kinetics of oxygen and carbon monoxide binding to liver fluke (Dicrocoelium dendriticum) hemoglobin. J. biol. Chem. 260: 2160–64 (1985)

    PubMed  Google Scholar 

  73. Iwaasa H., Takagi T. and Shikama K.: Protozoan hemoglobin from Tetrahymena pyriformis. Isolation, characterization, and amino acid sequence. J. Biol. Chem. 265: 8603–09 (1990)

    PubMed  CAS  Google Scholar 

  74. Jannasch H. W.: Deepsea life on the basis of chemical synthesis (In German). Naturwissenschaften 72: 285–290 (1985)

    CAS  Google Scholar 

  75. Jensen E. B. et al.: A three-state MWC analysis of oxygenation in tench (Tina tinca) hemoglobin. J. comp. Physiol. B 160: 407–411 (1990)

    CAS  Google Scholar 

  76. Jhiang S. M. and Riggs A. F: The structure of the gene encoding chain c of the hemoglobin of the earthworm, Lumbricus terrestris. J. Biol. Chem. 264: 19003–08 (1989)

    PubMed  CAS  Google Scholar 

  77. Johnson B. A.: Structure and function of the hemocyanin from a semiterrestrial crab, Ocypode quadrata. J. comp. Physiol. B 157: 501–509 (1987)

    PubMed  CAS  Google Scholar 

  78. Jones G. et al.: Molecular cloning, regulation, and complete sequence of a hemocyanin-related, juvenile hormone-suppressible protein from insect hemolymph. J. Biol. Chem. 265: 8596–8602 (1990)

    PubMed  CAS  Google Scholar 

  79. Kapp O. H. et al.: Quaternary structure of the giant extracellular hemoglobin of the leech Macrobdella decora. J. mol. Biol. 213: 141–158 (1990)

    PubMed  CAS  Google Scholar 

  80. Karlson S. and Nienhuis A. W.: Developmental regulation of human globin genes. Annual Rev. Biochem. 54: 1071–1108 (1985)

    Google Scholar 

  81. Kleinschmidt T. and Sgouros J. G.: Hemoglobin sequences. Biol. Chem. Hoppe-Seyler 368: 579–615 (1987)

    PubMed  CAS  Google Scholar 

  82. Kleinschmidt T., Keyl H. G. and Braunitzer G.: Comparison of insect hemoglobins (erythrocruorins) from Chironomus thummi thummi and Chironomus thummi piger (Diptera): The primary stucture of the monomeric hemoglobin CPTIII. Biol. Chem. HoppeSeyler 370: 839–845 (1989)

    PubMed  CAS  Google Scholar 

  83. Klippenstein G. L.: Structural aspects of hemerythrin and myohemerythrin. Amer. Zool. 20: 39–51 (1980)

    CAS  Google Scholar 

  84. Knöchel W et al.: Globin evolution in the genus Xenopus: Comparative analysis of cDNAs coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis. J. mol. Evol. 23: 211–223 (1986)

    PubMed  Google Scholar 

  85. Kobayashi M., Nezu T. and Tanaka Y.: Hypoxic induction of hemoglobin synthesis in Daphnia magna. Comp. Biochem. Physiol. Pt. A 97: 513–517 (1990)

    Google Scholar 

  86. Kolatkar P. R. et al.: Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo. J. biol. Chem. 263: 3462–65 (1988)

    PubMed  CAS  Google Scholar 

  87. Komiyama M. H. et al.: Was the loss of the D-helix in a-globin a functional neutral mutation? Nature 352: 349–351 (1991)

    PubMed  CAS  Google Scholar 

  88. Koop B. F. and Goodman M.: Evolutionary and developmental aspects of two hemoglobin 13-chain genes (epsilon-M and beta-M) of opossum. Proc. Nat. Acad. Sci. USA 85: 3893–97 (1988)

    PubMed  CAS  Google Scholar 

  89. Koop B. F. et al.: Tarsius delta-and beta-globin genes: conversions, evolution and systematic implications. J. Biol. Chem. 264: 68–79 (1989)

    PubMed  CAS  Google Scholar 

  90. Kortt A. A., Trinick M. J. and Appleby C A: Amino acid sequences of hemoglobins I and II from root nodules of the non-leguminous Parasponia rigida-Rhizobium symbiosis, and a correction of the sequence of hemoglobin I from Parasponia andersonii. Eur. J. Biochem. 175: 141–149 (1988)

    PubMed  CAS  Google Scholar 

  91. van Kuik J. A. et al.: Primary structure of the neutral carbohydrate chains of hemocyanin from Panulirus interruptus. Eur. J. Biochem. 159: 297–301 (1986)

    PubMed  Google Scholar 

  92. van Kuik J. A. et al.: Primary structure of the acidic carbohydrate chain of hemocyanin from Panulirus interruptus. FEBS Letters 221: 150–154 (1987)

    Google Scholar 

  93. van Kuik J. A. et al.: Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis–3–0Methyl-D-galactose and N-acetyl-D-galactosamin as constituents of xylose-containing N-linked oligosaccharides in an animal glycoprotein. Eur. J. Biochem. 169: 399–411 (1987)

    PubMed  Google Scholar 

  94. Lallier E. and Truchot J. P.: Modulation of hemocyainn oxygen affinity by L-lactate and urate in the prawn Penaeus japonicus. J. exp. Biol. 147: 133–146 (1989)

    CAS  Google Scholar 

  95. Landsmann J. et al.: Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324: 166–168 (1986)

    CAS  Google Scholar 

  96. Lang W. H.: cDNA cloning of the Octopus dofleini hemocyanin: Sequence of the carboxyl-terminal domain Biochemistry 27: 7276–82 (1988)

    CAS  Google Scholar 

  97. Lecomte J. T. J. et al.: Structural and electronic properties of the liver fluke heme cavity by nuclear magnetic resonance and optical spectroscopy. Evidence for a distal tyrosine residue in a normally functioning hemoglobin. J. mol. Biol. 209: 235–247 (1989)

    PubMed  CAS  Google Scholar 

  98. Lee A. W. and Karplus M.: Structure-specific model of hemoglobin cooperativity. Proc. Nat. Acad. Sci. USA 80: 7055–59 (1983)

    PubMed  CAS  Google Scholar 

  99. Leidescher T. and Decker H.: Conformational changes of tarantula (Eurypelma californicum) hemocyanin detected with a fluorescent probe, 7chloro-4-nitrobenzo-2-oxa-1,3-diazole. Eur. J. Biochem. 187: 617–625 (1990)

    PubMed  CAS  Google Scholar 

  100. Lerch K. et al.: Different origins of metal binding sites in binuclear copper proteins, tyrosinase and hemocyanin J inorg. Biochem. 26: 213–217 (1986)

    CAS  Google Scholar 

  101. Lesk A. M. and Chothia C.: How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins. J. mol. Biol. 136: 225–270 (1980)

    PubMed  CAS  Google Scholar 

  102. Leung S. O., Proudfoot N. J. and Whitelaw E.: The gene for theta-globin is transcribed in human fetal erythroid tissues. Nature 329: 551–554 (1987)

    PubMed  CAS  Google Scholar 

  103. Levy M. J. et al.: Isolation and characterization of methemoglobin reductase from yellowfin tuna (Thun-nus albacares). Comp. Biochem. Physiol. Pt. B 81: 809–814 (1985)

    CAS  Google Scholar 

  104. Leyko W. and Osmulski P. A.: Seasonal variability of hemoglobin content and component composition of Chironomus thummi larvae. Comp. Biochem. Physiol. Pt. B 89: 613–616 (1985)

    Google Scholar 

  105. Li Q. L. et al.: Beta-globin locus activation regions. Conservation of organization, structure and function. Proc. Nat. Acad. Sci. USA 87: 8207–11 (1990)

    PubMed  CAS  Google Scholar 

  106. Liebhaber S. A., Cash E E. and Ballas S. K.: Human a-globin gene expression. The dominant role of the a2-locus in mRNA and protein synthesis. J. biol. Chem. 261: 15327–33 (1986)

    PubMed  CAS  Google Scholar 

  107. Lima A. A. B. et al.: Allosteric effect of protons and adenosine triphosphate on hemoglobins from aquatic amphibia. J. comp. Physiol. B 155: 353–355 (1985)

    CAS  Google Scholar 

  108. Linzen B. (ed.): Invertebrate oxygen carriers. Springer, Berlin 1986

    Google Scholar 

  109. Linzen B.: Blue blood. Structure and evolution of hemocyanins (In German). Naturwissenschaften 76: 206–211 (1989).

    PubMed  CAS  Google Scholar 

  110. Livingston D. J., Watts D. A. and Brown W. D.: Myoglobin interspecies structural differences: effects on autoxidation and oxygenation. Arch. Biochem. Biophys. 249: 106–115 (1986)

    PubMed  CAS  Google Scholar 

  111. Makino N.: Subunits of Panulirus japonicus hemocyanin. 2. Cooperativity of the homogonous hexamers. Eur. J. Biochem. 173: 431–435 (1988)

    PubMed  CAS  Google Scholar 

  112. Mangum C. P. (ed.): Blood and oxygen carriers. Springer, New York 1992

    Google Scholar 

  113. Manwell C. and Baker C. M. A.: Magelona haemerythrin: tissues specificity, molecular weights and oxygen equilibiria. Comp. Biochem. Physiol. Pt. B 89: 453–463 (1988)

    Google Scholar 

  114. Margot J. B., Demers G. W. and Hardison R. C.: Complete nucleotide sequence of the rabbit 13-like globin gene cluster. J. mol. Biol. 205: 15–40 (1989)

    PubMed  CAS  Google Scholar 

  115. Markl J.: Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol. Bull. 171: 90–115 (1986)

    CAS  Google Scholar 

  116. Markl J. et al.: Quaternary and subunit structure of Calliphora arylphorin as deduced from electron microscopy, electrophoresis, and sequence similarities with arthropod hemocyanin. J. comp. Physiol. B 162: 665–680 (1992)

    PubMed  CAS  Google Scholar 

  117. Martin K. D. and Parkhurst L. J.: Kinetics and thermodynamics of oxygen and carbon monoxide binding to the T-state hemoglobin of Urechis caupo. Biochemistry 29: 5718–26 (1990)

    PubMed  CAS  Google Scholar 

  118. Matsuura M. S. A., Fushitani K and Riggs A. E: The amino acid sequences of the a and ß chains of hemoglobin from the snake, Liophis miliaris. J. Biol. Chem. 264: 5515–21 (1989)

    PubMed  CAS  Google Scholar 

  119. Mayr G. W. and Dietrich W.: The only inositol tetrakisphosphate detectable in avian erythrocytes is the isomer lacking phosphate at position 3: a NMR study. FEBS Letters 213: 278–282 (1987)

    PubMed  CAS  Google Scholar 

  120. Miller K. I. and Mangum C. P.: An investigation of the nature of Bohr, Root, and Haldane effects in Octopus dofleini hemocyanin. J. comp. Physiol. B 158: 547–552 (1988)

    PubMed  CAS  Google Scholar 

  121. Miller K. I., Schabtach E. and van Holde K. E.: Arrangement of subunits and domains within the Octopus dofleini hemocyanin. Proc. Nat. Acad. Sci. USA 87: 1496–1500 (1990)

    PubMed  CAS  Google Scholar 

  122. Mintorovitch J., van Pelt D. and Satterlee J. D.: Kinetic study of the slow cyanide binding to Glycera dibranchiata monomer hemoglobin. Biochemistry 28: 6099–6104 (1989)

    PubMed  CAS  Google Scholar 

  123. Miyashita N. et al.: Allelic constitution of the hemoglobin beta chain in wild populations of the house mouse, Mus musculus. Biochem. Genetics 23: 975–986 (1985)

    CAS  Google Scholar 

  124. Moon A. M. and Ley T. J.: Conservation of the primary structure, organization, and function of the human and mouse 13-globin locus-activating regions. Proc. Nat. Acad. Sci. USA 87: 7693–97 (1990)

    PubMed  CAS  Google Scholar 

  125. Myers C. R. et al.: Haemoglobin-producing tissue of larvae and pupae of Chironomus thummi (Diptera). J. Insect Physiol. 32: 845–851 (1986)

    CAS  Google Scholar 

  126. Nakashima H. et al.: Structure of hemocyanin II from the horseshoe crab, Limulus polyphemus. Sequences of two overlapping peptides, ordering the CNBr fragments, and the complete amino acid sequence. J. biol. Chem. 261: 10526–33 (1986)

    PubMed  CAS  Google Scholar 

  127. Neuteboom B. et al.: Partial amino acid sequence of a hemocyanin subunit from Palinurus vulgaris. Comp. Biochem. Physiol. Pt. B 94: 593–597 (1989)

    CAS  Google Scholar 

  128. Osmulski P. A. and Leyko W.: Structure, function and physiological role of Chironomus haemoglobin (Review). Comp. Biochem. Physiol. Pt. B 85: 701–722 (1986)

    Google Scholar 

  129. Padgett R. W. et al.: The molecular organization of the beta-globin complex of the deer mouse, Peromyscus maniculatus. Mol. Biol. Evol. 4: 30–45 (1987)

    PubMed  CAS  Google Scholar 

  130. Peeters K. et al.: The globin composition of Daphnia pulex hemoglobin and the comparison of the amino acid composition of invertebrate hemoglobins. Comp. Biochem. Physiol. Pt. B 97: 369–381 (1990)

    Google Scholar 

  131. Perutz M. F.: Species adaptation in a protein molecule. Mol. Biol. Evol. 1: 1–28 (1983)

    PubMed  CAS  Google Scholar 

  132. Perutz M. E.: Species adaptation in a protein molecule. Adv. Protein Res. 36: 213–244 (1984)

    CAS  Google Scholar 

  133. Petruzzelli R. et al.: Amino acid sequence of a-chain of hemoglobin IV from trout (Salmo irideus). Biochim. biophys. Acta 995: 255–258 (1989)

    CAS  Google Scholar 

  134. Petruzzelli R. et al.: Scapharca hemoglobins, type cases of a novel mode of chain assembly and hemeheme communication. Amino acid sequence and subunit interactions of the tetrameric. FEBS Letters 259: 133–136)1889)

    Google Scholar 

  135. Powers D. A.: Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Amer. Zool. 20: 139–162 (1980)

    CAS  Google Scholar 

  136. Reischl E. et al.: Bohr effect, electroin spin resonance spectroscopy and subunit dissociation of the hemoglobin components from the turtle Phrynops hilarii. Comp. Biochem. Physiol. Pt. B 78: 251–157 (1984)

    CAS  Google Scholar 

  137. Rendell M. et al.: An interspecies comparison of normal levels of glycosylated hemoglobin and glycosylated albumin Comp. Biochem. Physiol. Pt. B 81: 819–822 (1985)

    CAS  Google Scholar 

  138. Richardson D. E. et al.: Allosteric interactions in sipunculid and brachiopod hemerythrins. Biochemistry 26: 1003–13 (1987)

    PubMed  CAS  Google Scholar 

  139. Riggs A. F.: The Bohr effect. Annual Rev. Physiol. 50: 181–204 (1988)

    CAS  Google Scholar 

  140. Robinson I. B. and Ingram V. M.: Gene evolution in the chicken (3-globin cluster. Cell 28: 515–521 (1982)

    Google Scholar 

  141. Royer W. E. jr., Hendrickson W. A. and Chiancone E.: Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249: 518–521 (1990)

    PubMed  CAS  Google Scholar 

  142. Rozynek P., Hankeln T. and Schmidt E. R.: Structure of a hemoglobin gene cluster and nucleotide sequence of three hemoglobin genes from the midge Chironomus thummi piger (Diptera, Insecta). Biol. Chem. Hoppe-Seyler 370: 533–542 (1989)

    PubMed  CAS  Google Scholar 

  143. Schartau W. et al.: Hemocyanins in spiders. XIII. Complete amino acid sequence of subunit a Eurypelma californicum. Biol. Chem. Hoppe-Seyler 371: 557–565 (1990)

    PubMed  CAS  Google Scholar 

  144. Schimenti J. C. and Dumcan C. H.: Structure and organization of the bovine 3-globin genes. Mol. Biol. Evol. 2: 514–525 (1985)

    PubMed  CAS  Google Scholar 

  145. Scott E. M. and Harrington J. P.: Methemoglobin reductase activity in fish erythrocytes. Comp. Biochem. Physiol. Pt. B 82: 511–513, (1985)

    CAS  Google Scholar 

  146. Shaw J. P., Marks J. and Shen C. K. J.: Evidence that the recently discovered theta-1-globin gene is functional in higher primates. Nature 326: 717–720 (1987)

    PubMed  CAS  Google Scholar 

  147. Shehee W. R. et al.: Nucleotide sequence of the BALB/c mouse 13-globin complex. J. mol. Biol. 205: 41–62 (1989)

    PubMed  CAS  Google Scholar 

  148. Shishikura E et al.: Amino acid sequence of the monomer subunit of the extracellular hemoglobin of Lumbricus terrestris. J. biol. Chem. 262: 3123–31 (1987)

    PubMed  CAS  Google Scholar 

  149. Simpson C. E., Taylor W. J. and Jacobson E. R.: Sickling hemoglobin polymerization in iguana erythrocytes. Comp. Biochem. Physiol. Pt. A 73: 703–708 (1982)

    CAS  Google Scholar 

  150. Sizaret P. Y. et al.: A refined quaternary structure of Androctonus australis hemocyanin Eur. J. Biochem. 127: 501–506 (1982)

    PubMed  CAS  Google Scholar 

  151. Smit J. D. G. et al.: Acid Bohr effect of a monomeric haemoglobin from Dicrocoelium dendriticum–Mechanism of the allosteric conformation transition. Eur. J. Biochem. 155: 231–237 (1986)

    PubMed  CAS  Google Scholar 

  152. Stalder J. et al.: Primary structure and evolutionary relationship between the adult a-globin genes and their 5’-flanking regions of Xenopus laevis and Xeno-pus tropicalis. J. mol. Evol. 28: 64–71 (1989)

    Google Scholar 

  153. Standley P. R. et al.: The calcium, copper and zinc content of some annelid extracellular haemoglobins. Biochem. J. 249: 915–916 (1988)

    PubMed  CAS  Google Scholar 

  154. Stern M. S. et al.: Amino acid sequence of the monomer subunit of the giant extracellular hemoglobin of the aquatic oligochaete, Tubifex tubifex. Eur. J. Biochem. 194: 67–73 (1990)

    PubMed  CAS  Google Scholar 

  155. Stoecker W. et al.: The quatenary structure of four crustacean two-hexameric hemocyanins• immunocorrelation, stoichiometry, reassembly and topology of individual subunits. J. comp. Physiol. B 158: 271–289 (1988)

    CAS  Google Scholar 

  156. Suzuki T: Amino acid sequence of myoglobin from the mollusc Dolabella auricularia. J. biol. Chem. 261: 3692–99 (1986)

    PubMed  CAS  Google Scholar 

  157. Suzuki T.: Amino acid sequence of a major globin from the sea cucumber Paracaudina chilensis. Biochim. biophys. Acta 998: 292–296 (1989)

    CAS  Google Scholar 

  158. Suzuki T. et al.: Hemoglobins from the two closely related clams Barbatia lima and Barbatia virescens. Comparison of their subunit structures and N-terminal sequence of the unusual two-domain chain. Zool. Sci. 6: 269–281 (1989)

    CAS  Google Scholar 

  159. Suzuki T., Takagi T. and Ohta S.: Amino acid sequence of the dimeric hemoglobin (Hb I) from the deep-sea cold-seep clam Calyptogena soyoae and the phylogenetic relationship with other molluscan hemoglobins. Biochim. biophys. Acta 999: 254–259 (1989)

    CAS  Google Scholar 

  160. Suzuki T., Takagi T. and Gotoh T.: Primary structure of the two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. J. Biol. Chem. 265: 12168–77 (1990)

    PubMed  CAS  Google Scholar 

  161. Suzuki T., Takagi T. and Ohta S.: Primary structure of a constituent polypeptide chain (AIII) of the giant hemoglobin from the deep-sea tube worm Lamellibrachia. A possible hydrogen sulfide-binding site. Biochemistry 266: 221–225 (1990)

    CAS  Google Scholar 

  162. Tam L. T., Gray G. P. and Riggs A. E: The hemoglobins of the bullfrog Rana catesbeiana. The structure of the f3-chain of component C and the role of the a-chain in the formation of intermolecular disulfide bonds. J. biol. Chem. 261: 8290–94 (1986)

    PubMed  CAS  Google Scholar 

  163. Terwilliger R. C. and Terwilliger N. B.: Molluscan hemoglobins (Review). Comp. Biochem. Physiol. Pt. B 81: 255–261 (1985)

    Google Scholar 

  164. Terwilliger N. B. et al.: Bivalve hemocyanins–a comparison with other molluscan hemocyanins Comp. Biochem. Physiol. Pt. B 89: 189–195 (1988)

    CAS  Google Scholar 

  165. Toulmond A., Jouin C. and de Frescheville J.: Hemocyanin of the protobranch bivalve mollusc Nucula hanleyi Winckworth. Comp. Biochem. Physiol. Pt. B 88: 71–74 (1987)

    Google Scholar 

  166. Trewitt P. M., Boyer D. R. and Bergstrom G.: Characterization of maternal haemoglobin in the eggs and embryos of Chironomus thummi. J. Insect Physiol. 32: 963–969 (1986)

    CAS  Google Scholar 

  167. Trotman C. N. A. et al.: The polymeric hemoglobin molecule of Artemia. Interpretation of translated cDNA sequence of nine domains J Biol. Chem. 266: 13789–95 (1991)

    PubMed  CAS  Google Scholar 

  168. Utecht R. E. and Kurtz jr. D. M.: Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii. Biochim. biophys. Acta 953: 164–178 (1988)

    CAS  Google Scholar 

  169. Val A. L. et al.: Biological aspects of Amazonian fishes–I. Red blood cell phosphates of schooling fishes (genus Semaprochilodus: Prochilodontidae). Comp. Biochem. Physiol. Pt. B 78: 215–217 (1984)

    CAS  Google Scholar 

  170. Vandergon T. L. and Colacino J. M.: Characterization of hemoglobin from Phoronis architecta (Phoronida). Comp. Biochem. Physiol. Pt. B 94: 31–39 (1989)

    Google Scholar 

  171. Viana de Freitas T., Alfonso A. M. M. and Neves A. G. A.: Purification and characterization of the glycopeptide II from the hemoglobin of Biomphalaria glabrata. Comp. Biochem. Physiol. Pt. B 81: 743–747 (1985)

    Google Scholar 

  172. Vinson C. R. and Bonaventura J.: Structure and oxygen equilibrium of the three coelomic cell hemoglobins of the echiuran worm Thalassema mellita (Conn). Comp. Biochem. Physiol. Pt. B 87: 361–366 (1987)

    CAS  Google Scholar 

  173. Vincent K. A. and Wilson A. C.: Evolution and transcription of Old World monkey globin genes. J. mol. Biol. 207: 465–479 (1989)

    PubMed  CAS  Google Scholar 

  174. Vinogradov S. N. and Kapp O. H. (eds.): Structure and function of invertebrate oxygen carriers. Springer, New York 1991

    Google Scholar 

  175. Vinogradov S. N., Sharma P. K. and Walz D. A.: Iron and heme content of the extracellular hemoglobins and chlorocruorins of annelids (Review). Comp. Biochem. Physiol. Pt. B 98: 187–194 (1991)

    CAS  Google Scholar 

  176. Vinogradov S. N. et al.: A dodecamer of globin chains is the principal functioning subunit of the extracellular hemoglobin of Lumbricus terrestris. J. Biol. Chem. 266: 13091–96 (1991)

    PubMed  CAS  Google Scholar 

  177. Voit R. and Feldmaierfuchs G.: Arthropod hemocyanins: Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunit-A and subunit-E. J. Biol. Chem. 265: 19447–52 (1990)

    PubMed  CAS  Google Scholar 

  178. Volbeda A. and Hol W. G. J.: Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. J. mol. Biol. 209: 249–279 (1989)

    PubMed  CAS  Google Scholar 

  179. Wache S., Terwilliger N. B. and Terwilliger R. C.: Hemocyanin structure changes during early development of the crab Cancer productus. J. exp. Zool. 247: 23–32 (1988)

    CAS  Google Scholar 

  180. Wainwright B. and Hope R.: Cloning and chromosomal location of the a-and ß-globin genes from a marsupial. Proc. Nat. Acad. Sci. USA 82: 8105–08 (1985)

    PubMed  CAS  Google Scholar 

  181. Wakabayashi S., Matsubara H. and Webster D. A.: Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481–483 (1986)

    PubMed  CAS  Google Scholar 

  182. Weber R. E., Braunitzer G. and Kleinschmidt T.: Functional multiplicity and structural correlations in the hemoglobin system of larvae of Cironomus thummi thummi (Insecta, Diptera): Hb components CTT I, CTT IIß, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX and CTT X. Comp. Biochem. Physiol. Pt. B 80: 747–753 (1985)

    CAS  Google Scholar 

  183. Weber R. E. and Jensen E. B.: Functional adaptations in hemoglobins from ectothermic vertebrates. Annual Rev. Physiol. 50: 161–179 (1988)

    CAS  Google Scholar 

  184. Wichertjes T. et al.: The quaternary structure of Sepia officinalis haemocyanin Biochim. biophys. Acta 872: 183–194 (1986)

    CAS  Google Scholar 

  185. Willard C. et al.: Comparison of human and chimpanzee zeta-globin genes. J. mol. Evol. 22: 309–315 (1985)

    PubMed  CAS  Google Scholar 

  186. Wills C.: Genetic variability. Clarendon Press, Oxford 1981

    Google Scholar 

  187. Wilson jr. R. R. and Knowles E. C.: Temperature adaptation of fish hemoglobins reflected in rates of autoxidation. Arch. Biochem. Biophys. 255: 210–213 (1987)

    PubMed  CAS  Google Scholar 

  188. Wood E. J. et al.: Relative molecular mass of the polypeptide chain of ßc-haemocyanin of Helix pomatia and carbohydrate composition of the functional units. Comp. Biochem. Physiol. Pt. B 82: 179–186 (1985)

    Google Scholar 

  189. Zafar R. S. et al.: The cDNA sequences encoding two components of the polymeric fraction of the intracellular hemoglobin of Glycera dibranchiata. J. Biol. Chem. 265: 21843–51 (1990)

    PubMed  CAS  Google Scholar 

  190. Zhang K. et al.: The active site of hemerythrin as determined by X-ray absorption fine structure. Biochemistry 27: 7470–79 (1988)

    PubMed  CAS  Google Scholar 

  191. Zimmer J. R. et al.: Kinetic study of the oxygenation process of hemerythrins from Lingula unguis and Siphonosoma crumanense. Biochim. biophys. Acta 874: 174–180 (1986)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urich, K. (1994). Respiratory Pigments. In: Comparative Animal Biochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06303-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06303-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08181-1

  • Online ISBN: 978-3-662-06303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics