Skip to main content

Microbial Systems in Sedimentary Environments of Continental Margins

  • Chapter

Abstract

The zone of continental margins is most important for the ocean’s productivity and nutrient budget and connects the flow of material from terrestrial environments to the deep-sea. Microbial processes are an important “filter” in this exchange between sediments and ocean interior. As a consequence of the variety of habitats and special environmental conditions at continental margins an enormous diversity of microbial processes and microbial life forms is found. The only definite limit to microbial life in sedimentary systems of continental margins appears to be high temperatures in the interior earth or in fluids rising from the interior. Many of the catalytic capabilities which microorganisms possess are still only incompletely explored and appear to continuously expand as new organisms are discovered. Recent discoveries at continental margins such as the microbial life in the deep sub-seafloor, microbial utilization of hydrate deposits, highly specialized microbial symbioses and the involvement of microbial processes in the formation of carbonate mounds have extended our understanding of the Earth’s bio- and geosphere dramatically. The aim of this paper is to identify important scientific issues for future research on microbial life in sedimentary environments of continental margins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Balzer W, Helder W, Epping E, Lohse L, Otto S (1998) Benthic denitrification and nitrogen cycling at the slope and rise of the NW European Continental Margin (Goban Spur). Prog Oceanogr 42:111–126

    Article  Google Scholar 

  • Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic mitrate-reducing bacteria. Arch Microbiol 169:159–165

    Article  Google Scholar 

  • Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397:508–512

    Article  Google Scholar 

  • Boetius A, Lochte K (1996) The effect of organic matter composition on hydrolytic potentials and growth of benthic bacteria in deep-sea sediments. Mar Ecol Prog Ser 140:235–250

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: The paradigm shift. Microb Molec Biol Rev 64:573–606

    Article  Google Scholar 

  • Devries DJ, Beart PM (1995) Fishing for drugs from the sea. — Status and strategies. Trends Pharmacol Sci 16:275–279

    Article  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microb Ecol 26:79–88

    Article  Google Scholar 

  • Faulkner DJ (2000) Marine natural products. Nat Prod Rep 17:7–55

    Article  Google Scholar 

  • Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microb 64:119–125

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev Aquat Sci 2:399–436

    Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 365–385

    Google Scholar 

  • Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U(1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Henriet JP, Guidard S & the ODP “Proposal 573” Team (2002) Carbonate mounds as a possible example for microbial activity in geological processes. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 439–455

    Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    Article  Google Scholar 

  • Hinrichs KU, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 457–477

    Google Scholar 

  • Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623

    Article  Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Article  Google Scholar 

  • Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin pp 173–207

    Chapter  Google Scholar 

  • Kühl M, Revsbech NP (2000) Biogeochemical microsensors for boundary layer studies. In: Boudreau BB, Jorgensen BB (eds) The Benthic Boundary Layer. Oxford University Press, New York pp 180–210

    Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M. (1999) Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    Google Scholar 

  • Lochte K, Pfannkuche O (2002) Processes driven by the small-sized organisms at the water-sediment interface. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 405–418

    Google Scholar 

  • MacGregor BJ, Ravenschlag K, Amann R(2002) Nucleic acid based techniques for analyzing the diversity, structure, and function of microbial communities in marine waters and sediments. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 419–438

    Google Scholar 

  • MacRae JD, Hall KJ (1998) Biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci Techn 38:177–185

    Article  Google Scholar 

  • McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R (1995) Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deepsea deposit feeder. Appl Environ Microbiol 61:1646–1648

    Google Scholar 

  • Orphan V, House CH, Hinrichs KU, McKeegan KD, DeLong EF (in press) Coupled isotopic and phylogenetic analyses of single cells: direct evidence for methane-consuming archaeal/bacterial consortia. Science

    Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  • Ramsing NB, Kühl M, Jørgensen BB (1993) Distribution of sulfate-reducing bacteria and 02-H2S in biofilm determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59: 3840–3849

    Google Scholar 

  • Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microb 66:3592–3602

    Article  Google Scholar 

  • Reeburgh WS (1996) “Soft spots” in the global methane budget. In: Lidstrom ME, Tabita FR (eds) Microbial Growth on C 1 Compounds. Kluwer Academic Publishers, Netherlands pp 334–342

    Chapter  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Maclntyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role ofmicrobes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jorgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geol 28:1091–1094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boetius, A. et al. (2002). Microbial Systems in Sedimentary Environments of Continental Margins. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds) Ocean Margin Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05127-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05127-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07872-9

  • Online ISBN: 978-3-662-05127-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics