Skip to main content

From Nucleation to Large Aggregates: the Growth of Filamentary

  • Conference paper
Progress in Industrial Mathematics at ECMI 2000

Part of the book series: Mathematics in Industry ((TECMI,volume 1))

  • 496 Accesses

Abstract

We shall briefly review some early nucleation models, and then examine some aspects of the subsequent evolution of their solutions. Such situation is characterised by the onset of comparatively large clusters that can diffuse into the medium and interact among themselves. We next discuss some situations where the aggregates being formed, whose actual shape is one of the major questions under consideration, do posses a filamentary nature, and can sometimes generate a percolating network. Finally, a particularly interesting case of such tree-like structures, that of vascular systems, will be addressed, and some facts (and open questions) concerning their simulation via reaction-diffusion equations will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreucci, D., Herrero, M.A. and Velazquez, J.J.L. (2001) The classical one-phase Stefan problem: a catalogue of interface behaviours. To appear in Surveys on Mathematics in Industry.

    Google Scholar 

  2. Andreucci, D., Herrero, M.A. and Velazquez, J.J.L. On the growth of filamentary planar structures. To appear.

    Google Scholar 

  3. Boal, A.K., Ilhan, F., De Rouchey, J., Albrecht, T.T., Russell, T.P. and Rotello, V.M. (2000) Self assembly of nanoparticles into structured spherical and network aggregates. Nature, 404, 746–748.

    Article  Google Scholar 

  4. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. and Penn, R.L. (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751–754.

    Article  Google Scholar 

  5. Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Rev. Modern Physics, 15, 1, 1–91.

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobedo, M., Herrero, M.A. and Velazquez, J.J.L. (2000) Radiation dynamics in homogeneous plasma. Physica D, 126, 236–260.

    Article  MathSciNet  Google Scholar 

  7. Flory, P. (1941) Molecular size distribution in three dimensional problems: I Gellation. J. Am. Chem. Soc., 63, 3083–3090.

    Article  Google Scholar 

  8. Gierer, A. and Meinhardt, H. (1972) A theory of biological pattern formation. Kybernetik, 12, 30–39.

    Article  Google Scholar 

  9. Herrero, M.A., Velazquez, J.J.L and Wrzosek, D. (2000) Sol-gel transition in a coagulation-difussion model. Physica D, 141, 221–247.

    Article  MathSciNet  MATH  Google Scholar 

  10. Luckhaus, S. (1991) The Stefan problem with the Gibbs-Thomson relation for the melting temperature. Europ. J. Appl. Math., 1, 101–111.

    Article  MathSciNet  Google Scholar 

  11. Lifshitz, I.M. and Slyozov, V.V. (1961) Kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Sol., 19, 35–50.

    Article  Google Scholar 

  12. Leyvraz, F. and Tschudi, H.R. (1981) Singularities in the kinetics of coagulation processes. J. Phys. A, 14, 3389–3405.

    Article  MathSciNet  MATH  Google Scholar 

  13. Meinhardt, H. (1982) Models of biological pattern formation. Academic Press.

    Google Scholar 

  14. Meinhardt, H. (1976) Morphogenesis of lines and nets. Differentiation, 6, 117–123.

    Article  Google Scholar 

  15. Meinhardt, H. (1997) Biological pattern formation as a complex dynamic phenomenon. Int. J. Bifurcation and Chaos, 7, 1, 1–26.

    Article  MATH  Google Scholar 

  16. McLeod, J.B. (1962) On an infinite set of nonlinear differential equations. Quart. J. Math. Oxford 2, 119–128.

    Article  MathSciNet  Google Scholar 

  17. Metzger, R.J. and Krasnow, M.A. (1999) Genetic control of branching morphogenesis. Science, 284, 1635–1639.

    Article  Google Scholar 

  18. Niethammer, B. and Pego, R.L. (1999) Non self-similar behaviour in the LSW theory of Ostwald ripening. J. Stat. Phys., 95, 867–902.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pelcé, P. (ed.) (1988) Dynamics of curved fronts. Perspectives in Physics, Academic Press.

    MATH  Google Scholar 

  20. Peng, G., Quiu, F., Guinzburg, V.V., Jasnow, D. and Balasz, A.C. (2000) Forming supramolecular networks from nanoscale rods in binary, phase-separating mixtures. Science, 288, 1802–1804.

    Article  Google Scholar 

  21. Smoluchowski, M. (1916) Drei Vorträge über Diffusion, Brownische Bewegung und Koagulation von Kolloiden. Physik Z, 17, 557–585.

    Google Scholar 

  22. Turing, A.M. (1952) The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London B, 237, 37–72.

    Article  Google Scholar 

  23. Velâzquez, J.J.L. (1998) The Becker-Döring equations and the Lifshitz-Slyozov theory. J. Stat. Phys., 92, 195–236.

    Article  MATH  Google Scholar 

  24. Velâzquez, J.J.L. (2000) On the effect of stochastic fluctuations in the dynamics of the Lifshitz-Slyozov-Wagner model. J. Stat. Phys., 99, 57–113.

    Article  MATH  Google Scholar 

  25. Wales, D.J. and Scheraga, H.A. (1999) Global optimization of clusters, crystals and biomolecules. Science, 285, 1368–1372.

    Article  Google Scholar 

  26. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrero, M.A. (2002). From Nucleation to Large Aggregates: the Growth of Filamentary. In: Anile, A.M., Capasso, V., Greco, A. (eds) Progress in Industrial Mathematics at ECMI 2000. Mathematics in Industry, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04784-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04784-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07647-3

  • Online ISBN: 978-3-662-04784-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics