Skip to main content

Sulfate Reduction in Marine Sediments

  • Chapter

Abstract

The present chapter deals with the biogeochemical transformations of sulfur within marine sediments during early diagenesis. The term ‘early diagenesis’ refers to the whole range of postdepositional processes that take place in aquatic sediments coupled either directly or indirectly to the degradation of organic matter. We focus on the processes that drive sulfate reduction together with the manifold associated biotic and abiotic reactions that make up the sedimentary sulfur cycle. Furthermore, we will give an overview of the quantitative significance of microbial sulfate reduction in the remineralization of organic matter and oxidation of methane in different depositional environments and discuss the often observed discrepancy between sulfate reduction rates deduced from radiotracer methods and those calculated from pore-water concentration profiles and/or solid-phase sulfur data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C., Mackin, J.E. and Cox Jr, R.T., 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res., 6: 263–289.

    Article  Google Scholar 

  • Aller, R.C. and Rude, P.D., 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochimica et Cosmochimica Acta, 52: 751–765.

    Article  Google Scholar 

  • Alperin, M.J. and Reeburgh, W.S., 1985. Inhibition experiments on anaerobic methane oxidation. Applied and Environmental Microbiology, 50: 940–945.

    Google Scholar 

  • Bak, F. and Pfennig, N., 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiology, 147: 184–189.

    Article  Google Scholar 

  • Berg, R, Rysgaard-Petersen, N. and Rysgaard, S., 1998. Interpretation of measured concentration profiles in the sediment porewater. Limnology Oceanography, 43: 1500–1510.

    Article  Google Scholar 

  • Berner, R.A., 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis. American Journal of Science, 267: 19–42.

    Article  Google Scholar 

  • Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1–23.

    Article  Google Scholar 

  • Berner, R.A., 1972. Sulfate reduction, pyrit formation, and the oceanic sulfur budget. In: Dyrissen, D. and Jagner, D. (eds), The changing chemistry of the oceans, Nobel Symposium, 20, Wiley, Stockholm, pp. 347–361.

    Google Scholar 

  • Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48: 605–615.

    Article  Google Scholar 

  • Blair, N.E. and Aller, R.C, 1995. Anaerobic methane oxidation on the Amazon shelf. Geochimica et Cosmochimica Acta, 59: 3707–3715.

    Article  Google Scholar 

  • Borowski, W.S., Paull, C.K. and Ussier, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24: 655–658.

    Article  Google Scholar 

  • Borowski, W.S. and Paull, C.K., 1997. The gas-hydrate detection problem: Reconition of shallow-subbottom gas hazards in deep-water areas, Offshore Technology Conference 5–8 May 1997, Houston Texas, pp. 211–216.

    Google Scholar 

  • Bowen, H.J.M., 1979. Environmental chemistry of the elements. Academic Press, London.

    Google Scholar 

  • Burdige, D.J. and Nealson, K.H., 1986. Chemical and microbiological studies af sulfide-mediated manganese reduction. Geomicrobiol. Journal, 4: 361–387.

    Google Scholar 

  • Canfield, D.E., 1988. Sulfate reduction and the diagenesis of iron in anoxic marine sediments. Ph.D. Dissertation, Yale University, New Haven, Conn., 248 pp.

    Google Scholar 

  • Canfield, D.E., 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research, 36: 121–138.

    Article  Google Scholar 

  • Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. American Journal of Science, 291: 177–188.

    Article  Google Scholar 

  • Canfield, D.E., Raiswell, R. and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292: 659–683.

    Article  Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57: 3867–3883.

    Article  Google Scholar 

  • Christensen, J.P., 1989. Sulfate reduction and carbon oxidation rates in continental shelf sediments, an examination of offshelf carbon transport. Cont. Shelf Res, 9: 223–246.

    Article  Google Scholar 

  • Claypool, G.E. and Kaplan, I.R., 1974. The origin and distribution of methane in marine sediments. In: Kaplan, I.R. (ed), Natural gases in marine sediments, Plenum Press, NY, pp. 99–139.

    Chapter  Google Scholar 

  • Cline, J.D. and Richards, F.A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environment Sci. Technology, 3: 838–843.

    Article  Google Scholar 

  • Coleman, M.L. and Raiswell, R., 1995. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: Evaluation of a dynamic model. American Journal of Science, 295: 282–308.

    Article  Google Scholar 

  • Cornwell, J.C. and Sampou, P.A., 1995. Environmental controls on iron sulfide mineral formation in a coastal plain estuary. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical transformations of sedimentary sulfur, ACS Symposium Series, 612, Washington, DC, pp. 224–242.

    Chapter  Google Scholar 

  • Devol, A.H. and Ahmend, S.I., 1981. Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature, 291: 407–408.

    Article  Google Scholar 

  • Devol, A.H., 1983. Methan oxidation rates in anaerobic sediments of Saanich Inlet. Limnology and Oceanography, 28: 738–742.

    Article  Google Scholar 

  • Devol, A.H. and Anderson, J.J., 1984. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et Cosmochimica Acta, 48: 993–1004.

    Article  Google Scholar 

  • Dos Santos Afonso, M. and Stumm, W., 1992. The reductive dissolution of iron (III) (hydr) oxides by hydrogen sulfide. Langmuir, 8: 1671–1676.

    Article  Google Scholar 

  • Drobner, E., Huber, H., Wachtershauser, G., Rose, D. and Stetter, K., 1990. Pyrit formation linked with hydrogen evolution under anaerobic conditions. Nature, 346: 742–744.

    Article  Google Scholar 

  • Edenborn, H.M., Silverberg, N., Mucci, A. and Sundby, B., 1987. Sulfate reduction in coastal marine sediments. Marine Chemistry, 21: 329–345.

    Article  Google Scholar 

  • Ehrlich, H.L., 1996. Geomicrobiology. Marcel Dekker, NY, 719 pp.

    Google Scholar 

  • Ferdelman, T.G., Fossing, H., Neumann, K. and Schulz, H.D., in press. Sulfate reduction in surface sediments of the south-east Atlantic continental margin between 15°38’S and 27°57’S (Angola and Namibia). Limnology and Oceanography.

    Google Scholar 

  • Fossing, H. and Jorgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8: 205–222.

    Article  Google Scholar 

  • Fossing, H. and Jorgensen, B.B., 1990. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. Geochimica et Cosmochimica Acta, 54: 2731–2742.

    Article  Google Scholar 

  • Fossing, H., Ferdelman, T.G. and Berg, P., subm. Sulfate reduction, methane oxidation, and their concentrations influenced by non-local transport of solutes in continental margin sediments of south-west Africa. Geochimica et Cosmochimica Acta.

    Google Scholar 

  • Giblin, A.E. and Howarth, R.W., 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography, 29: 47–63.

    Article  Google Scholar 

  • Gingele, F.X. and Dahmke, A., 1994. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography, 9: 151–168.

    Article  Google Scholar 

  • Gingele, F.X., Zabel, M., Kasten, S., Bonn, W.J. and Niirnberg, C.C., in press. Biogenic barium — methods and constraints of application as a proxy for paleoproductivity: In: Fischer G. and Wefer, G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic.

    Google Scholar 

  • Goldhaber, M.B. and Kaplan, I.R., 1974. The sulfur cycle. In: Goldberg, E.D. (ed), The Sea, 5, Wiley, pp 569–655.

    Google Scholar 

  • Goldhaber, M.B., Aller, R.C., Cochran, J.K., Rosenfeld, K., Martens, C.S. and Berner, R.A., 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. American Journal of Science, 277: 193–237.

    Google Scholar 

  • Greeff, O., RieB, W., Wenzhofer, F., Weber, A., Holby, O. and Glud, R.N., subm. Pathways of carbon oxidation in Gotland Basin, Baltic Sea, measured in situ by use of benethic landers. Cont. Shelf Res.

    Google Scholar 

  • Haese, R.R., 1997. Beschreibung und Ouantifizierung friihdiagnetischer Reaktionen des Eisens in Sedimenten des Siidatlantiks. Berichte, 99, Fachbereich Geowissenschaften, Universitat Bremen, 118 pp.

    Google Scholar 

  • Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. Journal, 5: 191–237.

    Article  Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8: 451–463.

    Article  Google Scholar 

  • Howarth, R.W., 1979. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–50

    Article  Google Scholar 

  • Ivanov, M.V., 1968. Microbiological processes in the formation of sulfur deposits. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Iversen, N. and Blachburn, T.H., 1981. Seasonal rates of methane oxidation in anoxid marine sediments. Appl. Environ. Microbiology, 41: 1295–1300.

    Google Scholar 

  • Iversen, N. and Jorgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.

    Article  Google Scholar 

  • Jorgensen, B.B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 22: 814–832.

    Article  Google Scholar 

  • Jorgensen, B.B., 1978a. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol. Journal, 1: 11–27.

    Article  Google Scholar 

  • Jorgensen, B.B., 1978b. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models. Geomicrobiol. Journal, 1: 29–47.

    Article  Google Scholar 

  • Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed — the role of sulphate reduction. Nature, 296: 643–645.

    Article  Google Scholar 

  • Jorgensen, B.B., 1983. Processes at the sediment-water interface. In: Bolin, B. and Cook, R.C. (eds), The major biogeochemical cycles and their interactions. SCOPE , pp. 477–509.

    Google Scholar 

  • Jorgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249: 152–154.

    Article  Google Scholar 

  • Karlin, R. and Levi, S., 1983. Diagnesis of magnetic minerals in recent hemipelagic sediments. Nature, 303: 327–330.

    Article  Google Scholar 

  • Karlin, R. and Levi, S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. Journal of Geophysical Research, 90: 10373–10392.

    Article  Google Scholar 

  • Kasten, S., Freudenthal, T., Gingele, EX., von Dobeneck, T. and Schulz, H.D., 1998. Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon Deep-Sea Fan. Geochimica et Cosmochimica Acta 62: 2253–2264.

    Article  Google Scholar 

  • Kelly, D.P., 1988. Oxidation of sulfur compounds. In: Cole, A.S. and Ferguson, S.J. (eds), The Nitrogen and Sulfur Cycles. Soc. Gen. Microbiol., 42, pp. 65–98.

    Google Scholar 

  • Kolling, A., 1991. Friihdiagnetische Prozesse und Stoff-Fliisse in marinen und astuarinen Sedimenten. Berichte, 15, Fachbereich Geowissenschaften, Universitat Bremen, 140 pp.

    Google Scholar 

  • Krein, E.B. and Aizenshtat, Z., 1995. Proposed thermal pathways for sulfur transformations in organic macromol-ecules: Laboratory simulation experiments. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical Transformations of Sedimentary Sulfur, ACS symposium series, 612, Washington, DC, pp. 110–137.

    Chapter  Google Scholar 

  • Kremling, K., 1985. The distribution of cadmium, copper, nickel, manganese, and aluminium in surface waters of the open Atlantic and European shelf area. Deep-Sea Research, 32, 531–555.

    Article  Google Scholar 

  • Lovley, D.R. and Phillips, E.J.P., 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. Journal, 6: 145–155.

    Google Scholar 

  • Luther, III G.W., Giblin, A., Howarth, R.W. and Ryans, R.A., 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 46: 2665–2669.

    Article  Google Scholar 

  • Luther, III G.W. and Church, T.M., 1991. An overview of the environment chemistry of sulfur in wetland systems. In: Howarth, R.W. et al (eds), Sulfur cycling on the continents. John Wiley, pp: 125–144.

    Google Scholar 

  • Martens, C.S. and Berner, R.A., 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science, 185: 1167–1169.

    Article  Google Scholar 

  • Middelburg, J.B.M., 1990. Early diagnesis and authigenic mineral formation in anoxic sediments of Kau Bay, Indonesia. PhD Thesis, Universitiy of Utrecht, Utrecht, 177 pp.

    Google Scholar 

  • Murray, J.W., Grundmanis, V. and Smethie, W.M. Jr, 1978. Interstitial water chemistry in sediments os Saanich Inlet. Geochimica et Cosmochimica Acta, 42: 1011–1026.

    Article  Google Scholar 

  • Niewohner, C, Hensen, C, Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.

    Article  Google Scholar 

  • Orr, W.L. and White, CM. (eds), 1990. Geochemistry of sulfur in fossil fuels. ACS Symposium Series, 429, Washington, DC.

    Google Scholar 

  • Passier, H.F., Middelburg, J.J., Os, B.J.H.v. and Lange, G.J.d., 1996. Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochimica et Cosmochimica Acta, 60: 751–763.

    Article  Google Scholar 

  • Postma, D., 1985. Concentration of Mn and separation from Fe in sediments — I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochimica et Cosmochimica Acta, 49: 1023–1033.

    Article  Google Scholar 

  • Pyzik, A.J. and Sommer, S.E., 1981. Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, 45: 687–698.

    Article  Google Scholar 

  • Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282: 1244–1265.

    Article  Google Scholar 

  • Raiswell, R., 1988. Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology, 16: 641–644.

    Article  Google Scholar 

  • Reeburgh, W.S., 1976. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 28: 337–344.

    Article  Google Scholar 

  • Reeburgh, W.S. and Heggie, D.T., 1977. Microbial methane consumbtion reactions and their effect on methane distributions in freshwater and marine environments. Limnology and Oceanography, 22: 1–9.

    Article  Google Scholar 

  • Reeburgh, W.S., 1980. Anaerobic methan oxidation: rate depth disributions in Skan Bay sediments. Earth and Planetary Science Letters, 47: 345–352.

    Article  Google Scholar 

  • Reeburgh, W.S., 1982. A major sink and flux control for methane in sediments: Anaerobic consumption. In: Fanning, K.A. and Manheim, F.T. (eds), The dynamic environment. Heath, Lexington, MA, pp. 203–217.

    Google Scholar 

  • Reeburgh, W.S., 1983. Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci., 11: 269–298.

    Article  Google Scholar 

  • Reeburgh, W.S. and Alperin, M.J., 1988. Studies on anaerobic methane oxidation. SCOPE/ UNEP, 66: 367–375.

    Google Scholar 

  • Rickard, D.T., 1975. Kinetics and mechanisms of pyrite formation at low temperatures. American Journal of Science, 275: 636–652.

    Article  Google Scholar 

  • Rickard, D. and Luther, III G.W., 1997. Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochimica et Cosmochimica Acta, 61: 115–134.

    Article  Google Scholar 

  • Sagemann, J., Jorgensen, B.B. and Greeff, O., 1998. Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol. Journal, 15: 85–100.

    Article  Google Scholar 

  • Schinzel, U., 1993. Laborversuche zu fruhdiagnetischen Reaktionen von Eisen (Ill)-Oxidhydraten in marinen Sedimenten. Berichte, 36, Fachbereich Geowissenschaften, Universitat Bremen, 189 pp

    Google Scholar 

  • Schouten, S., Eglington, T.I., Sinninghe Damste, J.S. and de Leeuw, J.W., 1995. Influence of sulfur cross-linking on the molecular size distribution of sulfur-rich macromol-ecules in bitumen. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical transformations of sedimentary sulfur, ACS Symposium Series, 612, Washington, DC, pp. 80–92.

    Chapter  Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Article  Google Scholar 

  • Schulz, H.D., cruise participants 1996. Report and preliminary result of METEOR cruise M 34/2 Walvis Bay-Walvis Bay, 29.01.1996–18.02.1996. Berichte, 78, Fachbereich Geo-wissenschaften, Universitat Bremen, 133 pp.

    Google Scholar 

  • Sorokin, Y.I., 1962. Experimental investigation of bacteriel sulfate reduction in the Black Sea using S35. Microbiology, 31: 329–335.

    Google Scholar 

  • Sweeney, R.E. and Kaplan, I.R., 1973. Pyrite Framboid Formation: Laboratory Synthesis and Marine Sediments. Economic Geology, 68: 618–634.

    Article  Google Scholar 

  • Swider, K.T. and Mackin, J.E., 1989. Transformation of sulfur compounds in marsh-flat sediments. Geochimica et Cosmochimica Acta, 53: 2311–2323.

    Article  Google Scholar 

  • Thamdrup, F., Finster, K., Hansen, J.W. and Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59: 101–108.

    Google Scholar 

  • Thamdrup, B., Finster, K., Fossing, H., Hansen, J.W. and Jorgensen, B.B., 1994a. Thiosulfate and sulfite distributions in porewater of marine related to manganese, iron, and sulfur geochemistry. Geochimica et Cosmochimica Acta, 58: 67–73.

    Article  Google Scholar 

  • Thamdrup, B., Glud, R.N. and Hansen, J.W., 1994b. Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochimica et Cosmochimica Acta, 58: 2563–2570.

    Article  Google Scholar 

  • Thamdrup, B. and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41: 1629–1650.

    Article  Google Scholar 

  • Torres, M.E., Brumsack, H.J., Bohrmann, G. and Emeis, K.C., 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127: 125–139.

    Article  Google Scholar 

  • Vairavamurthy, M.A., Orr, W.L. and Manowitz, B., 1995. Geochemical transformation of sedimentary sulfur: an introduction. In: Vairavamurthy, M.A. and Schoonen, M.A.A. (eds), Geochemical tranformation of sedimentary sulfur. ACS Symposium, 612, Washington, DC, pp. 1–17.

    Chapter  Google Scholar 

  • Widdel, E, 1988. Microbiology and ecology of sulfate-and sulfur-reduction bacteria. In: Zehnder, A.J.B. (ed), Biology of anaerobic microorganisms. Wiley & Sons, NY, pp. 469–585.

    Google Scholar 

  • Widdel, F. and Hansen, T.A., 1991. The dissimilatory sulfate-and sulfur-reducing bacteria. In: Balows, H. et al. (eds), The procaryotes. Springer, pp. 583–624.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasten, S., Jørgensen, B.B. (2000). Sulfate Reduction in Marine Sediments. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics