Skip to main content

Brain Dopamine: A Historical Perspective

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 1))

Abstract

To the student of the history of brain dopamine (DA), the amine offers an excellent example of an endogenous compound that right from the start has presented aspects of both scientific and clinical importance. Although on several points DA shares this characteristic with the other two catecholamines, adrenaline and noradrenaline (NA), what sets DA apart is the tightness of the interdigitation between its basic research and the clinical implications — for brain DA, there has never been a dividing line between the two; each has served as the driving force for the other. To bring out this interconnection has been the primary object of the following “Historical Perspective”. The decidedly human relevance of brain DA research also has been the ultimate vindication of the pleasure we take in our work as DA researchers. The writer has tried to convey in this essay some of the excitement of this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson GH (ed) (1966) Second Symposium on catecholamines, Pharmacol Rev, vol 18. Williams & Wilkins, Baltimore

    Google Scholar 

  • Aghajanian GK, Bunney BS (1973) Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon Press, New York Toronto Oxford Sydney Braunschweig, p 643

    Google Scholar 

  • Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat. Nature 245:150–151

    CAS  Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    PubMed  CAS  Google Scholar 

  • Anden N-E (1972) Dopamine turnover in the corpus striatum and the limbic System after treatment with neuroleptic and anti-acetylcholine drugs. J Pharm Pharmacol 24:905–906

    PubMed  CAS  Google Scholar 

  • Andén N-E, Carlsson A, Dahlström A, Fuxe K, Hillarp N-A, Larsson K (1964a) Demonstration and mapping out of nigro-striatal dopamine neurons. Life Sei 3:523–530

    Google Scholar 

  • Andén N-E, Roos B-E, Werdinius B (1964b) Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sei 3:149–158

    Google Scholar 

  • Andén N-E, Dahlström A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and dieneephalon. Acta Physiol Scand 67:313–326

    Google Scholar 

  • Andén N-E, Rubenson A, Fuxe K, Hökfelt T (1967) Evidence for dopamine reeeptor Stimulation by apomorphine. J Pharm Pharmacol 19:627–629

    PubMed  Google Scholar 

  • Andén N-E, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970) Reeeptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314

    PubMed  Google Scholar 

  • Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    PubMed  CAS  Google Scholar 

  • Barbeau A (1962) The pathogenesis of Parkinson’s disease: a new hypothesis. Can Med Ass J 87:802–807

    PubMed  CAS  Google Scholar 

  • Barbeau A (1969) L-Dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Ass J 101:791–800

    Google Scholar 

  • Barbeau A, Murphy GF, Sourkes TL (1961) Excretion of dopamine in diseases of basal ganglia. Science 133:1706–1707

    PubMed  CAS  Google Scholar 

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catécholamines dans la maladie de Parkinson. In: de Ajuriaguerra J (ed) Monoamines et Systeme nerveux centrale. Georg, Genève and Masson, Paris, p 247

    Google Scholar 

  • Barger G, Dale HH (1910) Chemical structure and sympathomimetic action of amines. J Physiol 41:19–59

    PubMed  CAS  Google Scholar 

  • Barger G, Ewins AJ (1910) Some phenolic derivatives of ß-phenylethylamine. J Chem Soc (London) 97:2253–2261

    CAS  Google Scholar 

  • Barolin GS, Bernheimer H, Hornykiewicz O (1964) Seitenverschiedenes Verhalten des Dopamins (3-Hydroxytyramin) im Gehirn eines Falles von Hemi-parkinsonismus. Schweiz Arch Neurol Psychiat 94:241–248

    Google Scholar 

  • Bernheimer H, Hornykiewicz O (1965) Herabgesetzte Konzentration der Homovanillinsäure im Gehirn von parkinsonkranken Menschen als Ausdruck der Störung des zentralen Dopaminstoffwechsels. Klin Wschr 43:711–715

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Hornykiewicz O (1973) Brain amines in Huntington’s chorea. Adv Neurol 1:525–531

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seiteiberger F (1973) Brain dopamine and the Syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    PubMed  CAS  Google Scholar 

  • Bertler å (1961) Occurrence and localization of catecholamines in the human brain. Acta Physiol Scand 51:97–107

    CAS  Google Scholar 

  • Bertler å, Rosengren E (1959) Occurrence and distribution of dopamine in brain and other tissues. Experientia 15:10–11

    PubMed  CAS  Google Scholar 

  • Bertler å, Rosengren E (1966) Possible role of brain dopamine. Pharmacol Rev 18:769–773

    PubMed  CAS  Google Scholar 

  • Bing RJ (1941) The formation of hydroxytyramine by extracts of renal cortex and by perfused kidneys. Am J Physiol 132:497–503

    CAS  Google Scholar 

  • Bing RJ, Zucker MB (1941) Renal hypertension produced by an amino acid. J Exp Med 74:235–245

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin (= DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wschr 73:787–788

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1962) Der L-Dioxyphenylalanin (= DOPA)-Effekt beim Parkinson-Syndrom des Menschen: zur Pathogenese und Behandlung der Parkinson-Akinese. Arch Psychiat Nervenkr 203:560–574

    PubMed  CAS  Google Scholar 

  • Björklund A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177:555–560

    PubMed  Google Scholar 

  • Blaschko H (1939) The specific action of L-dopa decarboxylase. J Physiol 96:50P-51P

    Google Scholar 

  • Blaschko H (1952) Amine oxidase and amine metabolism. Pharmacol Rev 4:415–458

    PubMed  CAS  Google Scholar 

  • Blaschko H (1957) Metabolism and storage of biogenic amines. Experientia 13:9–12

    PubMed  CAS  Google Scholar 

  • Blaschko H, Chrusciel TL (1960) The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine-treated mice. J Physiol 151:272–284

    PubMed  CAS  Google Scholar 

  • Bloom FE, Costa E, Salmoiraghi GC (1965) Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administration by microelectrophoresis. J Pharmacol Exp Ther 150:244–252

    PubMed  CAS  Google Scholar 

  • Brodie BB, Costa E (1962) Some current views on brain monoamines. In: de Ajuriaguerra J (ed) Monoamines et Systeme nerveux central. Georg, Genève and Masson, Paris, p 13

    Google Scholar 

  • Brozoski TJ, Brown RM, Ptak J, Goldman PS (1979) Dopamine in prefrontal cortex of rhesus monkeys: evidence for a role in cognitive funetion. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers, vol 2. Pergamon Press, New York Oxford, p 1681

    Google Scholar 

  • Calne DB, Teychenne PF, Claveria LE, Eastman R, Greenacre JK, Petrie A (1974) Bromocriptine in parkinsonism. Brit Med J 4:442–444

    PubMed  CAS  Google Scholar 

  • Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous System. Pharmacol Rev 11:490–493

    PubMed  CAS  Google Scholar 

  • Carlsson A (1964) Functional significance of drug-induced changes in brain monoamine levels. In: Himwich HE, Himwich WA (eds) Progr Brain Res 8: Biogenic amines. Elsevier, Amsterdam, p 9

    Google Scholar 

  • Carlsson A (1965) Drugs which block the storage of 5-hydroxytryptamine and related amines. In: Eichler O, Farah A (eds) 5-Hydroxytryptamine and related indolealkylamines. Springer, Berlin Heidelberg New York (Handbook of Experimental Pharmacology, vol 19) pp 529–592)

    Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1962) DOPA analogues as tools for the study of dopamine and noradrenaline in brain. In: de Ajuriaguerra J (ed) Monoamines et système nerveux central. Georg, Genève and Masson, Paris, p 89

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharm Tox 20:140–144

    PubMed  CAS  Google Scholar 

  • Clouet DH, Ratner RL (1970) Catecholamine biosynthesis in brains of rats treated with morphine. Science 168:854–855

    PubMed  CAS  Google Scholar 

  • Connor JD (1970) Caudate nucleus neurones: correlation of the effects of substantia nigra Stimulation with iontophoretic dopamine. J Physiol 208:691–703

    PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Ungerstedt U (1973) Effect of ergot drugs on central catecholamine neurons: evidence for a Stimulation of central dopamine neurons. J Pharm Pharmacol 25:409–411

    PubMed  CAS  Google Scholar 

  • Costa E, Côté LJ, Yahr MD (eds) (1966) Biochemistry and pharmacology of the basal ganglia. Raven Press, Hewlett, New York

    Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer IM (1967) Aromatic amino acids and modification of Parkinsonism. New Engl J Med 276:374–379

    PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969a) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969b) Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science 166:899–901

    PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1975) Dopamine reeeptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci 17:993–1002

    CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine reeeptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    PubMed  CAS  Google Scholar 

  • Curtis DR, Davis R (1961) A central action of 5-hydroxytryptamine and noradrenaline. Nature 192:1083–1084

    PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous System. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62:suppl 232

    Google Scholar 

  • Dale H (1943) Modes of drug action. General introduetory address. Trans Faraday Soc 39:319–322

    Google Scholar 

  • Degkwitz R, Frowein R, Kulenkampff C, Mohs U (1960) über die Wirkungen des L-DOPA beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid and Vitamin B6. Klin Wschr 38:120–123

    PubMed  CAS  Google Scholar 

  • DeLong MR, Georgopoulos AP, Crutcher MD (1983) Cortico-basal ganglia relations and coding of motor Performance. Exp Brain Res (Suppl) 7:30–39

    Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    PubMed  CAS  Google Scholar 

  • Denny-Brown D (1966) The Cerebral Control of Movement (Sherrington lectures for 1963). Liverpool University Press, Liverpool.

    Google Scholar 

  • DiChiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic System of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    CAS  Google Scholar 

  • DiChiara G, Morelli M, Consolo S (1994) Modulatory funetions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233

    CAS  Google Scholar 

  • Eble JN (1964) A proposed mechanism for the depressor effect of dopamine in the anesthetized dog. J Pharmacol Exp Ther 145:64–70

    PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38:1236–1239

    PubMed  CAS  Google Scholar 

  • Ernst AM (1965) Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS. Psychopharmacologia 7:391–399

    PubMed  CAS  Google Scholar 

  • Ernst AM (1967) Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia 10:316–323

    PubMed  CAS  Google Scholar 

  • Ernst AM, Smelik PG (1966) Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia 22:837

    PubMed  CAS  Google Scholar 

  • Evarts EV, Kimura M, Wurtz RH, Hikosaka O (1984) Behavioural correlates of activity in basal ganglia neurons. Trends Neurosci 7:447–453

    Google Scholar 

  • Everett GM (1961) Some electrophysiological and biochemical correlates of motor activity and aggressive behavior. Neuro-Psychopharmacol 2:479–484

    Google Scholar 

  • Everett GM (1970) Evidence for dopamine as a central neuromodulator: neurological and behavioral implications. In: Barbeau A, McDowell FH (eds) L-DOPA and Parkinsonism. FA Davis, Philadelphia, p. 364

    Google Scholar 

  • Everett GM, Toman JEP (1959) Mode of action of Rauwolfia alkaloids and motor activity. Biol Psychiat 2:75–81

    Google Scholar 

  • Everett GM, Wiegand RG (1962) Central amines and behavioral states: a critique and new data. Proc. 1st Internat Pharmacol Meeting 8:85–92

    CAS  Google Scholar 

  • Flückiger E, Wagner HR (1968) 2-Br-a-Ergokryptin: Beeinflussung von Fertilität und Laktation bei der Ratte. Experientia 24:1130

    PubMed  Google Scholar 

  • Funk C (1911) Synthesis of dl-3:4-dihydroxyphenylalanine. J Chem Soc 99:554–557

    CAS  Google Scholar 

  • Fuxe K (1964) Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Z Zellforsch 61:710–724

    PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64:Suppl 247

    Google Scholar 

  • Fuxe K, Hökfelt T (1970) Central monoaminergic systems and hypothalamic funetion. In: Martini L, Motta M, Fraschini F (eds) The hypothalamus. Academic Press, New York, p 123

    Google Scholar 

  • Gage FH, Kawaja MD, Fisher LJ (1991) Genetically modified cells: applications for intracerebral grafting. Trends Neurosci 14:328–333

    PubMed  CAS  Google Scholar 

  • Gerstenbrand F, Pateisky K, Prosenz P (1963) Erfahrungen mit L-Dopa in der Therapie des Parkinsonismus. Psychiat Neurol 146:246–261

    CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    PubMed  CAS  Google Scholar 

  • Glowinski J, Iversen L (1966) Regional studies of catecholamines in the rat brain — III: subcellular distribution of endogenous and exogenous catecholamines in various brain regions. Biochem Pharmacol 15:977–987

    PubMed  CAS  Google Scholar 

  • Glowinski J, Cheramy A, Giorguieff MF (1979) In-vivo and in-vitro release of dopamine. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic Press, London New York San Francisco, p 199

    Google Scholar 

  • Goldberg LI (1972) Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 24:1–29

    PubMed  CAS  Google Scholar 

  • Goldstein M, Anagnoste B, Owen WS, Battista AF (1966) The effects of ventromedial tegmental lesions on the biosynthesis of catecholamines in the striatum. Life Sci 5:2171–2176

    CAS  Google Scholar 

  • Goodall McC (1951) Studies of adrenaline and noradrenaline in mammalian hearts and suprarenals. Acta Physiol Scand 24: Suppl 85

    Google Scholar 

  • Graybiel AM, Ragsdale Jr CW (1979) Fiber connections of the basal ganglia. Progr Brain Res 51:239–283

    Google Scholar 

  • Guggenheim M (1913) Dioxyphenylalanin, eine neue Aminosäure aus vicia faba. Z Physiol Chem 88:276–284

    Google Scholar 

  • Hasama B-I (1930) Beiträge zur Erforschung der Bedeutung der chemischen Konfiguration für die pharmakologischen Wirkungen der adrenalinähnlichen Stoffe. Arch Exp Path Pharmakol 153:161–186

    CAS  Google Scholar 

  • Hassler R (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 48:387–476

    Google Scholar 

  • Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic nerve endings. Nature 192:172–173

    PubMed  CAS  Google Scholar 

  • Hertting G, Axelrod J, Kopin IJ, Whitby LG (1961) Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature 189:66

    PubMed  CAS  Google Scholar 

  • Himwich HE, Himwich WA (eds) (1964) Progress Brain Res 8: Biogenic amines. Elsevier, Amsterdam

    Google Scholar 

  • Hökfelt T, Fuxe K (1972) Effects of prolactin and ergot alkaloids on the tuberoinfundibular dopamine (DA) neurons. Neuroendocrinology 9:100–122

    PubMed  Google Scholar 

  • Holtz P (1939) Dopadecarboxylase. Naturwissenschaften 27:724–725

    Google Scholar 

  • Holtz P, Heise R, Lüdtke K (1938) Fermentativer Abbau von 1-Dioxyphenylalanin durch die Niere. Arch Exp Path Pharmak 191:87–118

    CAS  Google Scholar 

  • Holtz P, Credner K (1942) Die enzymatische Entstehung von Oxytyramin im Organismus und die physiologische Bedeutung der Dopadecarboxylase. Arch Exp Path Pharmak 200:356–388

    CAS  Google Scholar 

  • Hornykiewicz O (1958) The action of dopamine on the arterial pressure of the guinea pig. Brit J Pharmacol 13:91–94

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1963) Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (3-Hydroxytyramin) in der Substantia nigra des normalen und Parkinsonkranken Menschen. Wien Klin Wschr 75:309–312

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1964) Zur Frage des Verlaufs dopaminerger Neurone im Gehirn des Menschen. Wien Klin Wschr 76:834–835

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1976) Neurohumoral interactions and basal ganglia function and dysfunction. In: Yahr MD (ed) The basal ganglia. Raven Press, New York, p 269

    Google Scholar 

  • Hornykiewicz O (1978) Psychopharmacological implications of dopamine and dopamine antagonists: a critical evaluation of current evidence. Neuroscience 3:773–783

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1986) A quarter Century of brain dopamine research. In: Woodruff GN, Poat JA, Roberts PJ (eds) Dopaminergic Systems and their regulation. Macmillan, London, p 3

    Google Scholar 

  • Hornykiewicz O (1992) From dopamine to Parkinson’s disease: a personal research record. In: Samson F, Adelman G (eds) The neurosciences: paths of discovery II. Birkhäuser, Boston, p 125

    Google Scholar 

  • Hornykiewicz O (1994) Levodopa in the 1960s: starting point Vienna. In: Poewe W, Lees AJ (eds) 20 Years of madopar - new avenues. Editiones Roche, Basel, p 11

    Google Scholar 

  • Hornykiewicz O (1998) Biochemical aspects of Parkinson’s disease. Neurology 51: Suppl 2: S2-S9

    Google Scholar 

  • Hornykiewicz O (2001) How L-DOPA was discovered as a drug for Parkinson’s disease 40 years ago. Wien Klin Wschr 113:855–862

    PubMed  CAS  Google Scholar 

  • Iversen LL (1975) Uptake processes for biogenic amines. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 3: Biochemistry of biogenic amines. Plenum Press, New York, London, p 381

    Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Movement Disorders 13:24–34

    PubMed  Google Scholar 

  • Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Ann Rev Neurosci 3:169–187

    PubMed  CAS  Google Scholar 

  • Jonsson G, Malmfors T, Sachs Ch (eds) (1975) Chemical tools in catecholamine research I. 6-Hydroxydopamine as a denervation tool in catecholamine research. North Holland, Amsterdam

    Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine reeeptor”. Proc Natl Acad Sci 69:2145–2149

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple reeeptors for dopamine. Nature 277:93–96

    PubMed  CAS  Google Scholar 

  • Kehr W, Carlsson A, Lindqvist M, Magnusson T, Attack C (1972) Evidence for a reeeptor-mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 24:744–747

    PubMed  CAS  Google Scholar 

  • Kerkut GA, Walker RJ (1961) The effects of drugs on the neurons of the snail Helix aspersa. Comp Biochem Physiol 3:143–160

    PubMed  CAS  Google Scholar 

  • Kerkut GA, Walker RJ (1962) The specific chemical sensitivity of Helix nerve cells. Comp Biochem Physiol 7:277–288

    PubMed  CAS  Google Scholar 

  • Kuschinsky K, Hornykiewicz O (1972) Morphine catalepsy in the rat: relation to striatal dopamine metabolism. Eur J Pharmacol 19:119–122

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a produet of meperidine-analog synthesis. Science 219:979–980

    PubMed  CAS  Google Scholar 

  • Langston JW, Irwin I (1986) MPTP: current coneepts and controversies. Clin Neuropharmacol 9:485–507

    PubMed  CAS  Google Scholar 

  • Laverty R (1974) On the roles of dopamine and noradrenaline in animal behaviour. Progr Neurobiol 3:31–70

    Google Scholar 

  • Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O (1978) Reeeptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 273:59–61

    PubMed  CAS  Google Scholar 

  • Levant B, Ling ZD, Carvey PM (1999) Dopamine D3 receptors. Relevance for the drug treatment of Parkinson’s disease. CNS Drugs 12:391–402

    CAS  Google Scholar 

  • Lloyd KG (1977) Neurotransmitter interactions related to central dopamine neurons. In: Youdim MBH, Lovenberg W, Sharman DF, Lagnado TR (eds) Essays in neurochemistry and neuropharmacology. John Wiley & Sons, Chichester, p 131

    Google Scholar 

  • Mannich C, Jacobsohn W (1910) über Oxyphenylalkylamine und Dioxyphenylalkylamine. Ber Deut Chem Ges 43:189–197

    CAS  Google Scholar 

  • Markey SP, Castagnoli Jr N, Trevor AJ, Kopin IJ (eds) (1986) MPTP: a neurotoxin producing a parkinsonian syndrome. Academic Press, Orlando.

    Google Scholar 

  • McGeer EG, McGeer PL, McLennan H (1961a) The inhibitory action of 3-hydroxytyramine, gamma-aminobutyric acid (GABA) and some other Compounds towards the crayfish Stretch reeeptor neuron. J Neurochem 8:36–49

    Google Scholar 

  • McGeer PL, Boulding JE, Gibson WC, Foulkes RG (1961b) Drug-induced extrapyramidal reactions. JAMA 177:665–670

    PubMed  CAS  Google Scholar 

  • Milhaud G, Glowinski J (1962) Métabolism de la dopamine-14C dans le cerveau du Rat. ètude du mode d’administration. CR Acad Sci (Paris) 255:203–205

    CAS  Google Scholar 

  • Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20:424–429

    PubMed  CAS  Google Scholar 

  • McLennan H, York DH (1967) The action of dopamine on neurones of the caudate nucleus. J Physiol 189:393–402

    PubMed  CAS  Google Scholar 

  • Montagu KA (1957) Catechol Compounds in rat tissues and in brains of different animals. Nature 180:244–245

    PubMed  CAS  Google Scholar 

  • Moore RY (1970) The nigrostriatal pathway: demonstration by anterograde degeneration. In: Barbeau A, McDowell FH (eds) L-DOPA and parkinsonism. FA Davis Company, Philadelphia, p 143

    Google Scholar 

  • Narabayashi H (1990) Surgical treatment in the levodopa era. In: Stern G (ed) Parkinson’s disease. Chapman & Hall, London, p 597

    Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia I. The corticobasal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    PubMed  CAS  Google Scholar 

  • Pijnenburg AJJ, van Rossum JM (1973) Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol 25:1003–1005

    PubMed  CAS  Google Scholar 

  • Pletscher A, DaPrada M (1993) Pharmacotherapy of Parkinson’s disease: research from 1960 to 1991. Acta Neurol Scand 87: Suppl 146:26–31

    CAS  Google Scholar 

  • Poirier LJ, Sourkes TL (1965) Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88:181–192

    PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I (1972) Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomolec Psychiat 1:2–7

    Google Scholar 

  • Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kennkyu No Shinpo 5:42–48 (First tranlation from the original Japanese in: Parkinsonism Relat Disord (2000) 6:3–6

    Google Scholar 

  • Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol Compounds in human brain. Biochim Biophys Acta 32:586–587

    PubMed  CAS  Google Scholar 

  • Sasame HA, Perez-Cruet J, DiChiara G, Tagliamonte A, Tagliamonte P, Gessa GL (1972) Evidence that methadone blocks dopamine reeeptors in the brain. J Neurochem 19:1953–1957

    PubMed  CAS  Google Scholar 

  • Schwab RS, Amador LV, Lettvin JY (1951) Apomorphine in Parkinson’s disease. Trans Amer Neurol Ass 76:251–253

    Google Scholar 

  • Schwartz J-C, Giros B, Martres M-P, Sokoloff P (1993) Multiple dopamine reeeptors as molecular targets for antipsychotics. In: Brunello N, Mendlewicz J, Racagni G (eds) New generation of antipsychotic drugs: novel mechanisms of action. Int Acad Biomed Drug Res, vol 4. Karger, Basel, p 1

    Google Scholar 

  • Seeman P (1980) Brain dopamine reeeptors. Pharmacol Rev 32:229–313

    PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain reeeptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380

    PubMed  CAS  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240

    CAS  Google Scholar 

  • Snyder SH (1973) Amphetamine psychosis: a model schizophrenia mediated by catecholamines. Am J Psychiat 130:61–67

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Schwartz J-C (1995) Novel dopamine reeeptors half a decade later. Trends Pharmacol Sci 16:270–275

    PubMed  CAS  Google Scholar 

  • Solomon P, Mitchell R, Prinzmetal M (1937) The use of benzedrine sulfate in postencephalitic Parkinson’s disease. JAMA 108:1765–1770

    CAS  Google Scholar 

  • Sourkes TL (2000) How dopamine was recognised as a neurotransmitter: a personal view. Parkinsonism Relat Disord 6:63–67

    PubMed  Google Scholar 

  • Sourkes TL, Poirier L (1965) Influence of the substantia nigra on the concentration of 5-hydroxytryptamine and dopamine of the striatum. Nature 207:202–203

    PubMed  CAS  Google Scholar 

  • Spano PF, Govoni S, Trabucchi M (1978) Studies on the pharmacological properties of dopamine reeeptors in various areas of the central nervous System. Adv Biochem Psychopharmacol 19:155–165

    PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, DiChiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 Opioid reeeptor mechanism. Science 276:2048–2050

    PubMed  CAS  Google Scholar 

  • Trabucchi E, Paoletti R, Canal N, Volicer L (eds) (1964) Biochemical and neurophysiological correlation of centrally acting drugs. Pergamon Press, Oxford

    Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1979) Central dopamine mechanisms and unconditioned behaviour. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic Press, London New York San Francisco, p 577

    Google Scholar 

  • Ungerstedt U, Avemo A, Avemo E, Ljungberg T, Ranje C (1973) Animal models of parkinsonism. Adv Neurol 3:257–271

    CAS  Google Scholar 

  • Usdin E, Bunney Jr WE (eds) (1975) Pre- and postsynaptic reeeptors. Marcel Dekker Inc, New York

    Google Scholar 

  • Vane JR, Wolstenholme GEW, O’Connor M (eds) (1960) Adrenergic mechanisms, Ciba Foundation Symposium. Churchill, London

    Google Scholar 

  • van Rossum JM (1964) Significance of dopamine in psychomotor stimulant action. In: Trabucchi E, Paoletti R, Canal N, Volicer L (eds) Biochemical and neurophysiological correlation of centrally acting drugs. Pergamon Press, Oxford, p 115

    Google Scholar 

  • van Rossum JM (1965) Different types of sympathomimetic α-receptors. J Pharm Pharmacol 17:202–216

    Google Scholar 

  • van Rossum JM (1966) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. Excerpta Med Intern Congr Series, no 129:321–329

    Google Scholar 

  • van Rossum JM, Hurkmans JAThM (1964) Mechanism of action of psychomotor stimulant drugs. Significance of dopamine in locomotor stimulant action. Int J Neuropharmacol 3:227–239

    Google Scholar 

  • Vogt M (1954) The concentration of sympathin in different parts of the central nervous System under normal condition and after the administration of drugs. J Physiol 123:451–481

    PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Stricker EM (1989) Animal models of parkinsonism using selective neurotoxins. Int Rev Neurobiol 31:1–79

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Abercrombie ED, Berger TW, Grace AA, Stricker EM (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 13:290–296

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hornykiewicz, O. (2002). Brain Dopamine: A Historical Perspective. In: Di Chiara, G. (eds) Dopamine in the CNS I. Handbook of Experimental Pharmacology, vol 154 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56051-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56051-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62726-2

  • Online ISBN: 978-3-642-56051-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics