Skip to main content

Toward in vivo Digital Circuits

  • Conference paper
Evolution as Computation

Part of the book series: Natural Computing Series ((NCS))

Abstract

We propose a mapping from digital logic circuits into genetic regulatory networks with the following property: the chemical activity of such a genetic network in vivo implements the computation specified by the corresponding digital circuit. Logic signals are represented by the synthesis rates of cytoplasmic DNA binding proteins. Gates consist of structural genes for output proteins, fused to promoter/operator regions that are regulated by input proteins. The modular approach for building gates allows a free choice of signal proteins and thus enables the construction of complex circuits. This paper presents simulation results that demonstrate the feasibility of this approach. Furthermore, a technique for measuring gate input/output characteristics is introduced. We will use this technique to evaluate gates constructed in our laboratory. Finally, this paper outlines automated logic design and presents BioSpice, a prototype system for the design and verification of genetic digital circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arkin and J. Ross. Computational functions in biochemical reaction net-works. Biophysical Journal, 67:560–578, August 1994.

    Article  Google Scholar 

  2. James U. Bowie and Robert T. Sauer. Identification of C-terminal extensionsthat protect proteins from intracellular proteolysis. Journal of Biological Chemistry, 264(13):7596–7602, 1989.

    Google Scholar 

  3. David E. Draper. Translational initiation. In Frederick C. Neidhardt, editor, Escherichia Coli and Salmonella, pages 902–908. ASM Press, Washington, D.C., 2nd edition, 1992.

    Google Scholar 

  4. Alice Longobardi Givan. Flow Cytometry: First Principles. Wiley-Liss, New York, 1992.

    Google Scholar 

  5. Roger W. Hendrix. Lambda IL Cold Spring Harbor Press, Cold Spring Harbor, New York, 1983.

    Google Scholar 

  6. Peter H. von Hippel, Thomas D. Yager, and Stanley C. Gill. Quantitative aspects of the transcription cycle in Escherichia coli. In Transcriptional Regulation, pages 179–201. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992.

    Google Scholar 

  7. A. Hjelmfelt, E. D. Weinberger, and J. Ross. Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sei., 88:10983–10987, December 1991.

    Article  MATH  Google Scholar 

  8. M. Thomas Record Jr., Wilham S. Reznikoff, Maria L. Craig, Kristi L. McQuade, and Paula J. Schlax. Escherichia coli RNA polymerase (eσ 70), promoters, and the kinetics of the steps of transcription initiation. In Frederick C. Neidhardt, editor, Escherichia coli and Salmonella, pages 792–821. ASM Press, Washington, D.C., 2nd edition, 1992.

    Google Scholar 

  9. S. A. Kauffman. Gene regulation networks: a theory for their global structure and bahviors. In A. Moscona and A. Monroy, editors. Current Topics in Developmental Biology, volume 6, pages 145–182. Academic Press, New York, 1971.

    Google Scholar 

  10. Thomas F. Knight, Jr. and Gerald Jay Sussman. Cellular gate technology. In C.S. Calude, J. Casti, and M.J. Dinneen, editors. First International Conference on Unconventional Models of Computation, pages 257–272, Auckland, NZ, 1998. Springer-Verlag.

    Google Scholar 

  11. Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sei., 94:814–819, February 1997.

    Article  Google Scholar 

  12. Harley H. McAdams and Adam Arkin. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struc, 27:199–224, 1998.

    Article  Google Scholar 

  13. Harley H. McAdams and Lucy Shapiro. Circuit simulation of genetic networks. Science, 269(5224):650–656, August 1995.

    Article  Google Scholar 

  14. J. Monod and F. Jacob. Cellular Regulatory Mechanisms, pages 389–401. Cold Spring Harbor Press, New York, 1961.

    Google Scholar 

  15. Frederick C. Neidhardt and Michael A. Savageau. Regulation beyond the Operon. In Frederick C. Neidhardt, editor, Escherichia coli and Salmonella, pages 1310–1324. ASM Press, Washington, D.C., 2nd edition, 1992.

    Google Scholar 

  16. Andrew A. Pakula and Robert T. Sauer. Genetic analysis of protein stability and function. Annual Review of Genetics, 23:289–310, 1989.

    Article  Google Scholar 

  17. Dawn A. Parsell, Karen R. Silber, and Robert T. Sauer. Carboxy-terminal determinants of intracellular protein degradation. Genes and Development, 4:277–286, 1990.

    Article  Google Scholar 

  18. Mark Ptashne. A Genetic Switch: Phage lambda and Higher Organisms. Cell Press and Blackwell Scientific Publications, Cambridge, MA, 2nd edition, 1986.

    Google Scholar 

  19. O. Roessler. J. Theor. Biol., 36:413–417, 1972.

    Article  Google Scholar 

  20. O. Roessler. In M. Conrad, W. Guettinger, and M. Dal Cin, editors. Lecture Notes in Biomathematics 4, pages 399–418. Springer, Berlin, 1974.

    Google Scholar 

  21. O. Roessler. In M. Conrad, W. Guettinger, and M. Dal Cin, editors. Lecture Notes in Biomathematics 4, pages 546–582. Springer, Berlin, 1974.

    Google Scholar 

  22. F. Seelig and O. Roessler. Z. Naturforsch, 27:1441–1444, 1972.

    Google Scholar 

  23. M. Sugita. Functional analysis of chemical systems in vivo using a logic circuit equivalent. J. Theor. Biol., 4:179–192, 1963.

    Article  Google Scholar 

  24. R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol, 42:563–585, 1973.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiss, R., Homsy, G.E., Knight, T.F. (2002). Toward in vivo Digital Circuits. In: Landweber, L.F., Winfree, E. (eds) Evolution as Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55606-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55606-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63081-1

  • Online ISBN: 978-3-642-55606-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics