Skip to main content

Modulator Sorption in Gradient Elution Chromatography

  • Conference paper
  • 99 Accesses

Abstract

Gradient elution, invented by Tiselius and his co-workers [1], employs a mobile phase whose composition at the column inlet varies with time. This is in contrast to isocratic elution, where the mobile phase composition remains constant at every point in the column throughout the separation. In fact, one of the reasons gradient elution was introduced was to hasten isocratic separations, by reducing tailing and by moving widely separated compounds closer together. It is also well-suited to the separation of macromolecules, whose retention tends to vary strongly with mobile phase composition [2], and is consequently a widely used technique in biotechnology.

Gradient elution chromatography is widely used to separate both small molecules and macromole- cules. The mobile phase additive (modulator) used to modify adsorbate retention is usually considered to be either unretained or linearly retained. In both cases, the shape of the gradient does not change as it moves down the column. However, the high mobile phase concentrations at which such a modulator is commonly used makes it likely to adsorb according to its nonlinear sorption isotherm. Here the quantitative consequences of such nonlinear modulator sorption are reviewed. Nonlinear sorption deforms the shape of the gradient during its passage through the column; ultimately a shock (or shock layer) could be formed. The condition for shock formation is discussed, and numerical simulations using representative parameters illustrate the magnitude of gradient deformation and the consequences for separation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aim RS, Williams RJP, Tiselius A (1952) Acta Chem Scand 6: 826.

    Article  Google Scholar 

  2. Jennissen HP (1976) Biochemistry 15: 5683.

    Article  CAS  Google Scholar 

  3. Rasmuson A (1982) Chem Eng Sci 37: 787.

    Article  CAS  Google Scholar 

  4. Snyder LR (1980) In: Horvath C (ed) High performance liquid chromatography: Advances and perspectives, vol 1. Academic, New York, p 108.

    Google Scholar 

  5. Snyder LR, Stadalius MA (1986) In: Horvath C (ed) High performance liquid chromatography: Advances and perspectives vol 4. Academic, New York, p 195.

    Google Scholar 

  6. Jandera P, Churacek J (1985) Gradient elution in column liquid chromatography: Theory and practice. Elsevier, New York.

    Google Scholar 

  7. Yamamoto S, Nakanishi K, Matsumo R (1988) Ion-exchange chromatography of proteins. Marcel Dekker, New York.

    Google Scholar 

  8. Aris R (1956) Proc Roy Soc (London) A235: 67.

    Article  Google Scholar 

  9. Poppe H, Paanakker J, Bronckhorst M (1981) J Chromatogr 204: 77.

    Article  CAS  Google Scholar 

  10. Drake B (1955) Arkiv Kemi 8: 1.

    CAS  Google Scholar 

  11. Freiling EC (1955) J Am Chem Soc 77: 2067.

    Article  CAS  Google Scholar 

  12. Snyder LR, Saunders DR (1965) J Chromatogr Sci 7: 195.

    Google Scholar 

  13. Liteanu G, Gocan S (1974) Gradient elution chromatography. Halstead ( Wiley ), New York.

    Google Scholar 

  14. Snyder LR, Dolan JW, Grant JR (1979) J Chromatogr 165: 3.

    Article  CAS  Google Scholar 

  15. Wilson JN (1940) J Am Chem Soc 62: 1583.

    Article  CAS  Google Scholar 

  16. Weiss J (1943) J Chem Soc 297.

    Google Scholar 

  17. Yamamoto S, Nakanishi K, Matsumo R, Kamikubo T (1983) Biotechnol Bioeng 25: 1373.

    Article  CAS  Google Scholar 

  18. Yamamoto S, Nakanishi K, Matsumo R, Kamikubo T (1983) Biotechnol Bioeng 25: 1465.

    Article  CAS  Google Scholar 

  19. McCoy BJ (1979) Sep Sci Tech 14: 515.

    Article  CAS  Google Scholar 

  20. Duarte PE, McCoy BJ (1982) Sep Sci Tech 17: 879.

    Article  CAS  Google Scholar 

  21. McCoy BJ (1984) J Chromatogr 291: 339.

    Article  CAS  Google Scholar 

  22. Kang K, McCoy BJ (1989) Biotechnol Bioeng 33: 786.

    Article  CAS  Google Scholar 

  23. Gibbs SJ, Lightfoot EN (1986) Ind Eng Chem Fundam 25: 490.

    Article  CAS  Google Scholar 

  24. Frey DD (1990) Biotechnol Bioeng 35: 1055.

    Article  CAS  Google Scholar 

  25. Snyder LR, Dolan JW, Cox JB (1989) J Chromatogr 483: 63.

    Article  CAS  Google Scholar 

  26. Snyder LR, Dolan JW, Cox JB (1989) J Chromatogr 484: 409.

    Article  Google Scholar 

  27. Snyder LR, Dolan JW, Cox JB (1991) J Chromatogr 540: 21.

    Article  CAS  Google Scholar 

  28. Liao AW, El Rassi Z, LeMaster DM, Horvath C (1987) Chromatographia 24: 881.

    Article  CAS  Google Scholar 

  29. Snyder LR, Dolan JW, Cox JB (1989) J Chromatogr 484: 437.

    Article  CAS  Google Scholar 

  30. Antia FD, Horvath C (1989) J Chromatogr 484: 1.

    Article  Google Scholar 

  31. Helfferich F, Klein G (1970) Theory of multicomponent chromatography. Marcel Dekker, New York.

    Google Scholar 

  32. DeVault D (1943) J Am Chem Soc 65: 532.

    Article  CAS  Google Scholar 

  33. Boehme W, Engelhardt H (1977) J Chromatogr 133: 67.

    Article  CAS  Google Scholar 

  34. Paanakker JE, Kraak JC, Poppe H (1978) J Chromatogr 149: 111.

    Article  CAS  Google Scholar 

  35. Adamson AW (1967) Physical chemistry of surfaces. Interscience, New York.

    Google Scholar 

  36. Slaats EH, Markovski W, Fekete J, Poppe H (1981) J Chromatogr 207: 299.

    Article  CAS  Google Scholar 

  37. Tani K, Suzuki Y (1989) J Chromatogr Sci 27: 698.

    CAS  Google Scholar 

  38. Everett DH (1986) Pure Appl Chem 58: 967.

    Article  CAS  Google Scholar 

  39. Velayudhan A, Ladisch MR (1992) Chem Eng Sci 47: 233.

    Article  CAS  Google Scholar 

  40. Rhee HK, Amundson NR (1971) Chem Eng Sci 26: 1571.

    Article  CAS  Google Scholar 

  41. Velayudhan A, Ladisch MR (1991) Anal Chem 64: 2028.

    Article  Google Scholar 

  42. Yamamoto S, Nomura M, Sano Y (1990) J Chromatogr 512: 89.

    Article  CAS  Google Scholar 

  43. Morbidelli M, Storti G, Carra M, Niederjaufner G, Pontoglio A (1985) Chem Eng Sci 40: 1155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Velayudhan, A., Ladisch, M.R. (1993). Modulator Sorption in Gradient Elution Chromatography. In: Yoshida, T., Tanner, R.D. (eds) Bioproducts and Bioprocesses 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49360-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49360-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49362-1

  • Online ISBN: 978-3-642-49360-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics