Skip to main content

One-to-Two Digital Earth

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

The digital Earth framework is a multiresolution 3D model used to visualize location-based data. In this paper, we introduce a new digital Earth framework using a cube as its underlying polyhedron. To create multiresolution, we introduce two types of 1-to-2 refinement. Having a smaller factor of refinement enables us to provide more resolutions and therefore a smoother transition among resolutions. We also suggest two indexing methods specifically designed for quadrilateral cells resulting from 1-to-2 refinement. We finally discuss the equal area spherical projection that we are using in this framework to model the Earth as a sphere partitioned to equal area cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Map Projections, http://www.progonos.com/furuti

  2. Google Earth, http://earth.google.com

  3. Goodchild, M.F., et al.: Next-generation digital earth. Proceedings of the National Academy of Sciences (2012)

    Google Scholar 

  4. Sahr, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Cartography and Geographic Information Science 30, 121–134 (2003)

    Article  Google Scholar 

  5. Rosca, D., Plonka, G.: Uniform spherical grids via equal area projection from the cube to the sphere. J. Computational Applied Mathematics 236, 1033–1041 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  7. Goodchild, M.F.: Discrete global grids for digital earth. In: Proceedings of 1st International Conference on Discrete Global Grids 2000 (March 2006)

    Google Scholar 

  8. Cozzi, P., Ring, K.: 3D Engine Design for Virtual Globes, 1st edn. CRC Press (2011)

    Google Scholar 

  9. Wickman, F.E., Elvers, E., Edvarson, K.: A system of domains for global sampling problems. Geografiska Annaler. Series A, Physical Geography 56, 201–212 (1974)

    Article  Google Scholar 

  10. Dutton, G.H.: A Hierarchical Coordinate System for Geoprocessing and Cartography. Lecture Notes in Earth Sciences Series. Springer (1999)

    Google Scholar 

  11. Sahr, K.: Location coding on icosahedral aperture 3 hexagon discrete global grids. Computers, Environment and Urban Systems 32, 174–187 (2008)

    Article  Google Scholar 

  12. Chan, F., O’neill, E.: Feasibility study of a quadrilateralized spherical cube earth data base. Technical report, EPRF, Silver Spring, Md. Computer Sciences Corporation. Environmental Prediction Research Facility (1976)

    Google Scholar 

  13. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: Planet-sized batched dynamic adaptive meshes (p-bdam). In: Proceedings of the 14th IEEE Visualization, VIS 2003, pp. 147–155. IEEE Computer Society (2003)

    Google Scholar 

  14. Greene, N.: Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications 6, 21–29 (1986)

    Google Scholar 

  15. Compton, K., Grieve, J., Goldman, E., Quigley, O., Stratton, C., Todd, E., Willmott, A.: Creating spherical worlds. In: ACM SIGGRAPH Sketches, SIGGRAPH 2007. ACM (2007)

    Google Scholar 

  16. Grimm, C.M.: Simple manifolds for surface modeling and parameterization. In: Proceedings of the Shape Modeling International, pp. 237–244 (2002)

    Google Scholar 

  17. Alborzi, H.: Geometric issues in spatial indexing. Master’s thesis, University of Maryland, College Park (2006)

    Google Scholar 

  18. Sahr, K.: Hexagonal discrete global grid systems for geospatial computing. Archives of Photogrammetry, Cartography and Remote Sensing 22, 363–376 (2011)

    Google Scholar 

  19. Cashman, T.J.: Beyond catmull-clark? a survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 42–61 (2012)

    Article  Google Scholar 

  20. Gargantini, I.: An effective way to represent quadtrees. Commun. ACM 25, 905–910 (1982)

    Article  MATH  Google Scholar 

  21. Mahdavi-Amiri, A., Samavati, F.: Connectivity maps for subdivision surfaces. In: GRAPP/IVAPP, pp. 26–37 (2012)

    Google Scholar 

  22. Grafarend, E.W., Krumm, F.W.: Map projections: cartographic information systems. Springer (2006)

    Google Scholar 

  23. Snyder, J.P.: An equal area map projection for polyhedral globes. Cartographica 29, 10–21 (1992)

    Article  Google Scholar 

  24. Harrison, E., Mahdavi-Amiri, A., Samavati, F.: Analysis of inverse snyder optimizations. Transactions on Computational Science 16, 134–148 (2012)

    Article  Google Scholar 

  25. Ivrissimtzis, I.P., Sabin, M.A., Dodgson, N.A.: A generative classification of mesh refinement rules with lattice transformations. Comput. Aided Geom. Des. 21, 99–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, G., Ma, W., Bao, H.: \(\sqrt{2}\) subdivision for quadrilateral meshes. Vis. Comput. 20, 180–198 (2004)

    Article  Google Scholar 

  27. Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Trans. Graph. 16, 420–431 (1997)

    Article  Google Scholar 

  28. Vince, A., Zheng, X.: Arithmetic and fourier transform for the pyxis multiresolution digital earth model. Int. J. Digital Earth 2, 59–79 (2009)

    Article  Google Scholar 

  29. Peters, J.: Patching catmull-clark meshes. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 255–258 (2000)

    Google Scholar 

  30. Thematic Mapping API, http://thematicmapping.org/

  31. PYXIS Innovation, http://www.pyxisinnovation.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amiri, A.M., Bhojani, F., Samavati, F. (2013). One-to-Two Digital Earth. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics