Skip to main content

Volume Visualization for Neurovascular Augmented Reality Surgery

  • Conference paper
Book cover Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions (MIAR 2013, AE-CAI 2013)

Abstract

In neurovascular image-guided surgery, surgeons use pre-operative vascular data sets (from angiography) to guide them. They map information from angiography images onto the patient on the operating room table to localize important vessels. This spatial mapping is complex, time consuming and prone to error. We’ve developed an augmented reality (AR) system to visualize the pre-operative vascular data within the context of a microscope/camera image. Such an AR visualization enhances the surgeon’s field of view with data that is not otherwise readily available (e.g., anatomical data beyond the visible surface or data about the flow of blood through the vessels), and it aids the surgeon to better understand the topology and locations of vessels that lie below the visible surface of the cortex. In this paper, we explore a number of different volume rendering methods for AR visualization of vessel topology and blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avery, B., Sandor, C., Thomas, B.: Improving Spatial Perception for Augmented Reality X-Ray Vision. In: IEEE Virtual Reality Conference (VR 2009), pp. 79–82 (March 2009)

    Google Scholar 

  2. Bichlmeier, C., Ockert, B., Heining, S.M., Ahmadi, A., Navab, N.: Stepping into the operating theater: ARAV – augmented reality aided vertebroplasty. In: ISMAR, pp. 165–166 (2008)

    Google Scholar 

  3. Chen, S.J.S., Kersten-Oertel, M., Drouin, S., Collins, D.L.: Visualizing the path of blood flow in static vessel images for image guided surgery of cerebral arteriovenous malformations. In: Proc. of SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, 8316308316 (February 2012)

    Google Scholar 

  4. Drouin, S., Kersten-Oertel, M., Chen, S.J.-S., Collins, D.L.: A Realistic Test and Development Environment for Mixed Reality in Neurosurgery. In: Linte, C.A., Moore, J.T., Chen, E.C.S., Holmes III, D.R. (eds.) AE-CAI 2011. LNCS, vol. 7264, pp. 13–23. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Edwards, P., Hawkes, D., Hill, D., Jewell, D., Spink, R., Strong, A., Gleeson, M.: Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J. Image Guid. Surg. 1, 172–178 (1995)

    Article  Google Scholar 

  6. Glossop, N., Wang, Z.: Projection augmented reality system for computer-assisted surgery. In: CARS, vol. 1256, pp. 65–71 (2003)

    Google Scholar 

  7. Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Computerized Medical Imaging and Graphics 37(2), 98–112 (2013)

    Article  Google Scholar 

  8. Kersten-Oertel, M., Jannin, P., Collins, D.L.: DVV: A Taxonomy for Mixed Reality Visualization in Image Guided Surgery. IEEE Transactions on Visualization and Computer Graphics 18(2), 332–352 (2012)

    Article  Google Scholar 

  9. Kersten-Oertel, M., Chen, S.J.S., Collins, D.L.: A Comparison of Depth Enhancing Perceptual Cues for Vessel Visualization in Neurosurgery. CARS 7(1), 166–167 (2012)

    Google Scholar 

  10. Konishi, K., Hashizume, M., Nakamoto, M., Kakeji, Y., Yoshino, I., Taketomi, A., Sato, Y., Tamura, S., Maehara, Y.: Augmented reality navigation system for endoscopic surgery based on three-dimensional ultrasound and computed tomography: Application to 20 clinical cases. In: CARS, vol. 1281, pp. 537–542 (2005)

    Google Scholar 

  11. Lerotic, M., Chung, A.J., Mylonas, G.P., Yang, G.Z.: pq-space Based Non-Photorealistic Rendering for Augmented Reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Mischkowski, R.A., Zinser, M.J., Kübler, A.C., Seifert, U., Zöller, J.: Clinical and experimental evaluation of an augmented reality system in craniomaxillofacial surgery. In: CARS, vol. 1281, pp. 565–570 (2005)

    Google Scholar 

  13. Osborn, A.: Diagnostic Cerebral Angiography, 2nd edn. Lippincott Williams & Wilkins (1999)

    Google Scholar 

  14. Paul, P., Fleig, O., Jannin, P.: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE T. Med. Imaging 24(11) (2005)

    Google Scholar 

  15. Ropinski, T., Steinicke, F., Hinrichs, K.: Visually supporting depth perception in angiography imaging. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Scheuering, M., Schenk, A., Schneider, A., Preim, B., Greiner, G.: Intraoperative augmented reality for minimally invasive liver interventions. In: SPIE Med. Imag., vol. 5029, pp. 407–417 (2003)

    Google Scholar 

  17. Suzuki, N., Hattori, A., Tanoue, K., Ieiri, S., Konishi, K., Tomikawa, M., Kenmotsu, H., Hashizume, M.: Scorpion shaped endoscopic surgical robot for NOTES and SPS with augmented reality functions. In: Liao, H., "Eddie" Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 541–550. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Wieczorek, M., Aichert, A., Kutter, O., Bichlmeier, C., Heining, R., Euler, E., Navab, N.: GPU-accelerated rendering for medical augmented reality in minimally-invasive procedures. In: BVM (2010)

    Google Scholar 

  19. Volonté, F., Pugin, F., Bucher, P., Sugimoto, M., Ratib, O., Morel, P.: Augmented reality and image overlay navigation with osirix in laparoscopic and robotic surgery: not only a matter of fashion. J. Hepatobiliary Pancreat. Sci. 18, 506–509 (2011)

    Article  Google Scholar 

  20. Yamaguchi, S., Ohtani, T., Yatani, H., Sohmura, T.: Augmented reality system for dental implant surgery. In: Shumaker, R. (ed.) VMR 2009. LNCS, vol. 5622, pp. 633–638. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kersten-Oertel, M., Drouin, S., Chen, S.J.S., Collins, D.L. (2013). Volume Visualization for Neurovascular Augmented Reality Surgery. In: Liao, H., Linte, C.A., Masamune, K., Peters, T.M., Zheng, G. (eds) Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions. MIAR AE-CAI 2013 2013. Lecture Notes in Computer Science, vol 8090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40843-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40843-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40842-7

  • Online ISBN: 978-3-642-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics