Skip to main content

An Approximate Execution of Rule-Based Multi-level Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Abstract

In cell biology, models increasingly capture dynamics at different organizational levels. Therefore, new modeling languages are developed, e.g., like ML-Rules, that allow a compact and concise description of these models. However, the more complex models become the more important is an efficient execution of these models. τ-leaping algorithms can speed up the execution of biochemical reaction models significantly by introducing acceptable inaccurate results. Whereas those approximate algorithms appear particularly promising to be applied to hierarchically structured models, the dynamic nested structures cause specific challenges. We present a τ-leaping algorithm for ML-Rules which tackles these specific challenges and evaluate the efficiency and accuracy of this adapted τ-leaping based on a recently developed visual analysis technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. The Journal of Chemical Physics 123(5) (2005)

    Google Scholar 

  2. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics 122(1), 014116 (2005)

    Article  Google Scholar 

  3. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. The Journal of Chemical Physics 124(4) (2006)

    Google Scholar 

  4. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau Leaping Stochastic Simulation Method in P Systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dematté, L., Prandi, D.: GPU computing for systems biology. Briefings in Bioinformatics 11(3), 323–333 (2010)

    Article  Google Scholar 

  6. Faeder, J.R.: Toward a comprehensive language for biological systems. BMC Systems Biology 9(68) (2011)

    Google Scholar 

  7. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. The Journal of Chemical Physics 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  9. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting system. The Journal of Chemical Physics 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  10. Haack, F., Burrage, K., Redmer, R., Uhrmacher, A.M.: Studying the role of lipid rafts on protein receptor bindings with Cellular Automata. IEEE/ACM Transactions on Computational Biology and Bioinformatics (accepted for publication, 2013)

    Google Scholar 

  11. Harris, L.A., Clancy, P.: A “partitioned leaping” approach for multiscale modeling of chemical reaction dynamics. The Journal of Chem. Physics 125(14) (2006)

    Google Scholar 

  12. Helms, T., Ewald, R., Rybacki, S., Uhrmacher, A.M.: A Generic Adaptive Simulation Algorithm for Component-based Simulation Systems. In: Proc. 27th Workshop on Principles of Adv. and Dist. Simulation, PADS 2013 (2013)

    Google Scholar 

  13. Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for Specifying Markovian Population Models. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 3–23. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Himmelspach, J., Uhrmacher, A.M.: Plug’n simulate. In: Proc. 40th Annual Simulation Symposium (ANSS 2007), pp. 137–143 (2007)

    Google Scholar 

  15. Jeschke, M., Ewald, R.: Large-Scale Design Space Exploration of SSA. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 211–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Jeschke, M., Ewald, R., Uhrmacher, A.M.: Exploring the Performance of Spatial Stochastic Simulation Algorithms. The Journal of Computational Physics 230(7), 2562–2574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, H., Petzold, L.: Logarithmic Direct Method for Discrete Stochastic Simulation of Chemically Reacting Systems. Technical report, Department of Computer Science, University of California: Santa Barbara (2006)

    Google Scholar 

  18. Luboschik, M., Rybacki, S., Ewald, R., Schwarze, B., Schumann, H., Uhrmacher, A.M.: Interactive Visual Exploration of Simulator Accuracy: A Case Study for Stochastic Simulation Algorithms. In: Proc. 44th Winter Simulation Conference, WSC 2012 (2012)

    Google Scholar 

  19. Marquez-Lago, T.T., Burrage, K.: Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. The Journal of Chemical Physics 127(10) (2007)

    Google Scholar 

  20. Maus, C.: Toward Accessible Multilevel Modeling in Systems Biology - A Rule-based Language Concept. PhD thesis, University of Rostock, Germany (2013)

    Google Scholar 

  21. Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modeling of cell biological systems. BMC Systems Biology 5(166) (2011)

    Google Scholar 

  22. Mazemondet, O., John, M., Leye, S., Rolfs, A., Uhrmacher, A.M.: Elucidating the Sources of β-Catenin Dynamics in Human Neural Progenitor Cells. PLoS ONE 7(8), e42792 (2012)

    Article  Google Scholar 

  23. Sandmann, W.: Streamlined formulation of adaptive explicit-implicit tau-leaping with automatic tau selection. In: Proc. 41st Winder Simulation Conference (WSC 2009), pp. 1104–1112 (2009)

    Google Scholar 

  24. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC (2007)

    Google Scholar 

  25. Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. The Journal of Chemical Physics 121(21), 10356–10364 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helms, T., Luboschik, M., Schumann, H., Uhrmacher, A.M. (2013). An Approximate Execution of Rule-Based Multi-level Models. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics