Connectivity Inference in Mass Spectrometry Based Structure Determination

  • Deepesh Agarwal
  • Julio-Cesar Silva Araujo
  • Christelle Caillouet
  • Frederic Cazals
  • David Coudert
  • Stephane Pérennes
Conference paper

DOI: 10.1007/978-3-642-40450-4_25

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)
Cite this paper as:
Agarwal D., Araujo JC.S., Caillouet C., Cazals F., Coudert D., Pérennes S. (2013) Connectivity Inference in Mass Spectrometry Based Structure Determination. In: Bodlaender H.L., Italiano G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg

Abstract

We consider the following Minimum Connectivity Inference problem (MCI), which arises in structural biology: given vertex sets Vi ⊆ V, i ∈ I, find a graph G = (V,E) minimizing the size of the edge set E, such that the sub-graph of G induced by each Vi is connected. This problem arises in structural biology, when one aims at finding the pairwise contacts between the proteins of a protein assembly, given the lists of proteins involved in sub-complexes. We present four contributions.

First, using a reduction of the set cover problem, we establish that the MCI problem is APX-hard. Second, we show how to solve the problem to optimality using a mixed integer linear programming formulation (MILP). Third, we develop a greedy algorithm based on union-find data structures (Greedy), yielding a 2(log2 |V| + log2κ)-approximation, with κ the maximum number of subsets Vi a vertex belongs to. Fourth, application-wise, we use the MILP and the greedy heuristic to solve the aforementioned connectivity inference problem in structural biology. We show that the solutions of MILP and Greedy are more parsimonious with respect to edges than those reported by the algorithm initially developed in biophysics, which are not qualified in terms of optimality. Since MILP outputs a set of optimal solutions, we introduce the notion of consensus solution. Using assemblies whose pairwise contacts are known exhaustively, we show an almost perfect agreement between the contacts predicted by our algorithms and the experimentally determined ones, especially for consensus solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Deepesh Agarwal
    • 1
  • Julio-Cesar Silva Araujo
    • 1
    • 2
  • Christelle Caillouet
    • 1
    • 2
  • Frederic Cazals
    • 1
  • David Coudert
    • 1
    • 2
  • Stephane Pérennes
    • 1
    • 2
  1. 1.INRIA Sophia-Antipolis - MéditerranéeFrance
  2. 2.CNRS, I3S, UMR 7271Univ. Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations