Advances in Cryptology – CRYPTO 2013

Volume 8042 of the series Lecture Notes in Computer Science pp 298-315

Accuracy-Privacy Tradeoffs for Two-Party Differentially Private Protocols

  • Vipul GoyalAffiliated withMicrosoft Research India
  • , Ilya MironovAffiliated withMicrosoft Research Silicon Valley
  • , Omkant PandeyAffiliated withThe University of Texas at Austin
  • , Amit SahaiAffiliated withUniversity of California Los Angeles

* Final gross prices may vary according to local VAT.

Get Access


Differential privacy (DP) is a well-studied notion of privacy that is generally achieved by randomizing outputs to preserve the privacy of the input records. A central problem in differential privacy is how much accuracy must be lost in order to preserve input privacy?

Our work obtains general upper bounds on accuracy for differentially private two-party protocols computing any Boolean function. Our bounds are independent of the number of rounds and the communication complexity of the protocol, and hold with respect to computationally unbounded parties. At the heart of our results is a new general geometric technique for obtaining non-trivial accuracy bounds for any Boolean functionality.

We show that for any Boolean function, there is a constant accuracy gap between the accuracy that is possible in the client-server setting and the accuracy that is possible in the two-party setting. In particular, we show tight results on the accuracy that is achievable for the AND and XOR functions in the two-party setting, completely characterizing which accuracies are achievable for any given level of differential privacy.

Finally, we consider the situation if we relax the privacy requirement to computational differential privacy. We show that to achieve any noticeably better accuracy than what is possible for differentially private two-party protocols, it is essential that one-way functions exist.