Towards Empathic Virtual and Robotic Tutors

  • Ginevra Castellano
  • Ana Paiva
  • Arvid Kappas
  • Ruth Aylett
  • Helen Hastie
  • Wolmet Barendregt
  • Fernando Nabais
  • Susan Bull
Conference paper

DOI: 10.1007/978-3-642-39112-5_100

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7926)
Cite this paper as:
Castellano G. et al. (2013) Towards Empathic Virtual and Robotic Tutors. In: Lane H.C., Yacef K., Mostow J., Pavlik P. (eds) Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science, vol 7926. Springer, Berlin, Heidelberg

Abstract

Building on existing work on artificial tutors with human-like capabilities, we describe the EMOTE project approach to harnessing benefits of an artificial embodied tutor in a shared physical space. Embodied in robotic platforms or through virtual agents, EMOTE aims to capture some of the empathic and human elements characterising a traditional teacher. As such, empathy and engagement, abilities key to influencing student learning, are at the core of the EMOTE approach. We present non-verbal and adaptive dialogue challenges for such embodied tutors as a foundation for researchers investigating the potential for empathic tutors that will be accepted by students and teachers.

Keywords

Virtual and robotic tutor affect recognition adaptive behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ginevra Castellano
    • 1
  • Ana Paiva
    • 2
  • Arvid Kappas
    • 3
  • Ruth Aylett
    • 4
  • Helen Hastie
    • 4
  • Wolmet Barendregt
    • 5
  • Fernando Nabais
    • 6
  • Susan Bull
    • 1
  1. 1.University of BirminghamUK
  2. 2.Inst de Engenharia de Sistemas e Computadores Investigação e DesenvolvimentoPortugal
  3. 3.Jacobs University Bremen GmbHGermany
  4. 4.Heriot-Watt UniversityUK
  5. 5.Goeteborgs UniversitetSweden
  6. 6.YDreams-Informatica S.A.Portugal

Personalised recommendations