Skip to main content

Personalization of Cardiac Fiber Orientations from Image Data Using the Unscented Kalman Filter

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

In this work, we propose to estimate rule-based myocardial fiber model (RBM) parameters from measured image data, with the goal of personalizing the fiber architecture for cardiac simulations. We first describe the RBM, which is based on a space-dependent angle distribution on the heart surface and then extended to the whole domain through an harmonic lifting of the fiber vectors. We then present a static Unscented Kalman Filter which we use for estimating the degrees of freedom of the fiber model. We illustrate the methodology using noisy synthetic data on a real heart geometry, as well as real DT-MRI-derived fiber data. We also show the impact of different fiber distributions on cardiac contraction simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 24(3), 339–347 (1969)

    Article  Google Scholar 

  2. Armour, J., Randall, W.: Structural basis for cardiac function. American Journal of Physiology – Legacy Content 218(6), 1517–1523 (1970)

    Google Scholar 

  3. Greenbaum, R.A., Ho, S.Y., Gibson, D.G., Becker, A.E., Anderson, R.H.: Left ventricular fibre architecture in man. British Heart Journal 45(3), 248–263 (1981)

    Article  Google Scholar 

  4. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. American Journal of Physiology - Heart and Circulatory Physiology 269(2), H571–H582 (1995)

    Google Scholar 

  5. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)

    Article  Google Scholar 

  6. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical simulation of the electromechanical activity of the heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models using poisson interpolation. Computer Methods in Biomechanics and Biomedical Engineering, 1–10, PMID: 23210529 (2012)

    Google Scholar 

  8. Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Annals of Biomedical Engineering 40, 2243–2254 (2012)

    Article  Google Scholar 

  9. Goektepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the strongly coupled excitation contraction problem. Computational Mechanics 45, 227–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chabiniok, R., Moireau, P., Lesault, P.F., Rahmouni, A., Deux, J.F., Chapelle, D.: Estimation of tissue contractility from cardiac cine-mri using a biomechanical heart model. Biomechanics and Modeling in Mechanobiology, 1–22 (2011), doi:10.1007/s10237-011-0337-8

    Google Scholar 

  11. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image Analysis (2012)

    Google Scholar 

  12. Lafortune, P., Ars, R., Vázquez, M., Houzeaux, G.: Coupled electromechanical model of the heart: Parallel finite element formulation. International Journal for Numerical Methods in Biomedical Engineering 28(1), 72–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the nmr spin echo. Journal of Magnetic Resonance, Series B 103(3), 247–254 (1994)

    Article  Google Scholar 

  14. Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. American Journal of Physiology - Heart and Circulatory Physiology 274(5), H1627–H1634 (1998)

    Google Scholar 

  15. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. American Journal of Physiology - Heart and Circulatory Physiology 275(6), H2308–H2318 (1998)

    Google Scholar 

  16. Helm, P., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Annals of the New York Academy of Sciences 1047(1), 296–307 (2005)

    Google Scholar 

  17. Helm, P.A., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magnetic Resonance in Medicine 54(4), 850–859 (2005)

    Google Scholar 

  18. Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Transactions on Medical Imaging 31(7), 1436–1447 (2012)

    Article  Google Scholar 

  19. Gamper, U., Boesiger, P., Kozerke, S.: Diffusion imaging of the in vivo heart using spin echoes considerations on bulk motion sensitivity. Magnetic Resonance in Medicine 57(2), 331–337 (2007)

    Article  Google Scholar 

  20. Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: in vivo human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. COCV 17, 380–405 (2011), doi:10.1051/cocv/2010006

    Google Scholar 

  22. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: American Control Conference, pp. 1628–1632 (1995)

    Google Scholar 

  23. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control 45(3), 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pham, D.-T., Verron, J., Gourdeau, L.: Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie. Comptes Rendus de l’Académie des Sciences - Series IIA 326(4), 255–260 (1998)

    Google Scholar 

  25. Hoteit, I., Pham, D.-T., Blum, J.: A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. Journal of Marine Systems 36(1–2), 101–127 (2002)

    Article  Google Scholar 

  26. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Computers & Structures 84(28), 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagler, A., Bertoglio, C., Gee, M., Wall, W. (2013). Personalization of Cardiac Fiber Orientations from Image Data Using the Unscented Kalman Filter. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics