Skip to main content

Some Like It Hot: Are Desert Plants Indifferent to Climate Change?

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 75))

Abstract

Deserts rank at the forefront of vulnerability to global change because their biota is expected to encounter large climatic changes while apparently existing at biological limits. We review the available evidence for climate change effects on arid lands, and specifically on vegetation because as primary producers, plants are main providers of ecosystem services. We summarize field experiments and correlative evidence from spatial and temporal climatic gradients. Surprisingly, only few climate manipulation experiments have been conducted in semideserts, none in arid regions, and almost none in cold drylands. We argue that correlative approaches do not yield the necessary knowledge to understand and thus mitigate potential changes due to their oversight of long-term evolutionary processes. Nonetheless, the limited mechanistic evidence suggests a surprisingly high resilience of desert vegetation to changes in precipitation and CO2. We suggest this resilience is due to specific adaptations that have evolved in response to stressful and highly variable climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Bates JD, Svejcar T, Miller RF, Angell RA (2006) The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–694

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof, JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on climate change. Secretariat, IPCC, Geneva

    Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Peñuelas J, Emmett B, Körner C, de Boeck H, Hesselbjerg Christensen J, Leuziger S, Janssens IA, Hansen K (2012) Precipitation manipulation experiments – challenges and recommendations for the future. Ecol Lett 15:899–911

    Article  PubMed  Google Scholar 

  • Bowers JE (2005) Effects of drought on shrub survival and longevity in the northern Sonoran Desert. J Torrey Bot Soc 132:421–431

    Article  Google Scholar 

  • Bowers JE, Turner RM (2001) Dieback and episodic mortality of Cercidium microphyllum (Foothill Paloverde), a dominant Sonoran Desert tree. J Torrey Bot Soc 128:128–140

    Article  Google Scholar 

  • Butterfield BJ, Betancourt JL, Turner RM, Briggs JM (2010) Facilitation drives 65 years of vegetation change in the Sonoran Desert. Ecology 91:1132–1139

    Article  PubMed  Google Scholar 

  • Browning DM, Dawn M, Duniway MC, Laliberte AS, Rango A (2012) Hierarchical analysis of vegetation dynamics over 71 years: soil-rainfall interactions in a Chihuahuan Desert ecosystem. Ecol Appl 22:909–926

    Article  PubMed  Google Scholar 

  • Callaway RM, de Lucia E, Schlesinger WH (2004) Biomass allocation of montane and desert ponderosa tree: an analog for response to climate change. Ecology 75:1474–1481

    Article  Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  PubMed  CAS  Google Scholar 

  • Cole KL (1990) Reconstruction of past desert vegetation along the Colorado river using packrat middens. Paleogeogr Palaeoclimatol Palaeoecol 76:349–366

    Article  Google Scholar 

  • Collins SL, Fargione SE, Crenshaw CL, Nonaka E, Elliott JR, Xia Y, Pockman WT (2010) Rapid plant community responses during the summer monsoon to nighttime warming in a northern Chihuahuan Desert grassland. J Arid Environ 74:611–617

    Article  Google Scholar 

  • Cowles HC (1899) The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot Gaz 27:95–117

    Article  Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism: a plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    Article  PubMed  CAS  Google Scholar 

  • Danin A (1976) Plant species diversity under desert conditions. Oecologia 22:251–259

    Article  Google Scholar 

  • de la Maza M, Lima M, Meserve PL, Gutiérrez JR, Jaksic FM (2009) Primary production dynamics and climate variability: ecological consequences in semiarid Chile. Glob Change Biol 15:1116–1126

    Article  Google Scholar 

  • D'Odorico P, Bhattachan A (2012) Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Philos Trans R Soc Lond B Biol Sci 367:3145–3157

    Article  PubMed  Google Scholar 

  • Dunne JA, Saleska SR, Fischer ML, Harte J (2004) Integrating experimental and gradient methods in ecological climate change research. Ecology 85:904–916

    Article  Google Scholar 

  • Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99:1500–1507

    Article  Google Scholar 

  • Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154

    Article  PubMed  CAS  Google Scholar 

  • Ewers FW, North BN, North GB, Noble PS (1992) Root-stem junctions of a desert monocotyledon and a dicotyledon: hydraulic consequences under wet conditions and during drought. New Phytol 121:377–385

    Article  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP, Ronald PC, Rosegrant MW, Sanchez PA, Vonshak A, Zhu JK (2010) Radically rethinking agriculture for the 21st century. Science 12:833–834

    Article  CAS  Google Scholar 

  • Fukami T, Wardle DA (2012) Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc Biol Sci 272:2105–2115

    Article  Google Scholar 

  • Gibson AC (1998) Photosynthetic organs of desert plants. BioScience 48:911–920

    Article  Google Scholar 

  • Grünzweig JM, Körner C (2000a) Biodiversity effects of elevated CO2 in species-rich model communities from the semi-arid Negev of Israel. Oikos 95:112–124

    Article  Google Scholar 

  • Grünzweig JM, Körner C (2000b) Growth and reproductive responses to elevated CO2 in wild cereals of the northern Negev of Israel. Glob Change Biol 6:631–638

    Article  Google Scholar 

  • Grünzweig JM, Körner C (2001) Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO2. Oecologia 128:251–262

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13:469–470

    Article  Google Scholar 

  • Harpole WS, Potts WS (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348

    Article  Google Scholar 

  • Halvorson WL, Patten DT (1974) Seasonal water potential changes in Sonoran Desert shrubs in relation to topography. Ecology 17:173–177

    Article  Google Scholar 

  • Holzapfel C, Tielbörger K, Parag HA, Kigel J, Sternberg M (2006) Annual plant-shrub interactions along an aridity gradient. Basic Appl Ecol 7:268–279

    Article  Google Scholar 

  • Huxman TE, Barron-Gafford G, Gerst KL, Angert AL, Tyler AP, Venable DL (2008) Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants. Ecology 89(6):1554–1563

    Article  PubMed  Google Scholar 

  • Ibañez I, Clark JS, Dietze MC, Feeley K, Hersh M, Ladeau S, McBride A, Welch NE, Wolosin MS (2006) Predicting biodiversity change: outside the climate envelope, beyond the species-area curve. Ecology 87:1896–1906

    Article  PubMed  Google Scholar 

  • International Livestock Research Institute (2006) Mapping climate vulnerability and poverty in Africa. ILRI, Nairobi

    Google Scholar 

  • IPCC (2007a) Climate change: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II. Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • IPCC (2007b) Climate change: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on climate change. Core Writing Team, United Nations, Geneva, p 104

    Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptations and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kadmon R (1994) Ecology of linear dunes. 2. Differential demographic responses of annual plants to local scale variation in sand stability. Isr J Plant Sci 72:275–284

    Article  Google Scholar 

  • Kimball S, Angert AL, Huxman TE, Venable DL (2010) Contemporary climate change in the Sonoran Desert favors cold-adapted species. Glob Change Biol 16:1555–1565

    Article  Google Scholar 

  • Kozlowski TT (1973) Extent and significance of shedding plant parts. In: Kozlowski TT (ed) Shedding of plant parts. Academic, New York, pp 1–44

    Chapter  Google Scholar 

  • Knapp AK, Briggs JM, Hartnett DC, Collins SL (1998) Grassland dynamics: long-term ecological research in tallgrass prairie. Oxford University Press, Oxford

    Google Scholar 

  • Körner C (2003) Limitation and stress – always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Kraaij T, Milton SJ (2005) Vegetation changes (1995–2004) in semi-arid Karoo shrubland, South Africa: effects of rainfall, wild herbivores and change in land use. J Arid Environ 64:174–192

    Article  Google Scholar 

  • Lampei C, Tielbörger K (2010) Evolvability of between-year seed dormancy in populations along an aridity gradient. Biol J Linn Soc 100:924–934

    Article  Google Scholar 

  • Lanner RM, Connor KF (2001) Does bristlecone pine senesce? Exp Gerontol 36:675–685

    Article  PubMed  CAS  Google Scholar 

  • Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48:373–395

    Article  Google Scholar 

  • Liancourt P, Tielbörger K (2009) Competition and a short growing season lead to ecotypic differentiation at the two extremes of the ecological range. Funct Ecol 23:397–404

    Article  Google Scholar 

  • Lindenmayer DB, Likens GE, Andersen A, Bowman D, Bull M, Burns E, Dickman CR, Hoffmann AA, Keith DA, Liddell MJ, Lowe AJ, Metcalfe DJ, Phinn SR, Russell-Smith J, Thurgate N, Wardle GM (2012) The value of long-term ecological studies. Austral Ecol 37:745–757

    Article  Google Scholar 

  • Link SO, Smith JL, Halvorson JJ, Bolton JR (2003) A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen. Glob Change Biol 9:1097–1105

    Article  Google Scholar 

  • Lioubimtseva E, Adams JM (2004) Possible implications of increased carbon dioxide levels and climate change for desert ecosystems. Environ Manage 33:S388–S404

    Article  Google Scholar 

  • Lucas RW, Forseth IN, Casper BB (2008) Using rainout shelters to evaluate climate change effects on the demography of Cryptantha flava. J Ecol 96:514–522

    Article  Google Scholar 

  • Lüttge U (2004) Ecophysiology of Crassulacean Acid Metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  CAS  Google Scholar 

  • Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans R Soc Lond B Biol Sci 367:3062–3075

    Article  PubMed  Google Scholar 

  • Maherali H, Williams BL, Paige KN, de Lucia EH (2002) Hydraulic differentiation of Ponderosa pine populations along a climate gradient is not associated with ecotypic divergence. Funct Ecol 16:510–521

    Article  Google Scholar 

  • Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front Ecol Environ 10:195–201

    Article  Google Scholar 

  • Meigs P (1953) World distribution of arid and semi-arid homoclimates. In: Reviews of research on arid zone hydrology. United Nations, Paris, pp 203–209

    Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vörösmarty CJ, Schloss AL (1993) Global climatic change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Metz J, Liancourt P, Kigel J, Harel D, Sternberg M, Tielbörger K (2010) Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J Ecol 98:697–704

    Article  Google Scholar 

  • Meze-Hausken E (2000) Migration caused by climate change: how vulnerable are people in dryland areas? Mitig Adapt Strateg Glob Change 5:379–406

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Research Institute, Washington, DC

    Google Scholar 

  • Milton SJ, Dean WRJ (2000) Disturbance, drought and dynamics of desert dune grassland, South Africa. Plant Ecol 150:37–51

    Article  Google Scholar 

  • Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effect on semi-arid plant communities of the Iberian Southeast. J Arid Environ 75:1302–1309

    Article  Google Scholar 

  • Miranda JD, Padilla FM, Lázaro R, Pugnaire FI (2009a) Do changes in rainfall patterns affect semiarid annual plant communities? J Veg Sci 20:269–276

    Article  Google Scholar 

  • Miranda JD, Padilla FM, Pugnaire FI (2009b) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol Evol Syst 11:255–266

    Article  Google Scholar 

  • Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci USA 104:14724–14729

    Article  PubMed  CAS  Google Scholar 

  • Morton SR, Stafford Smight DM, Dickman CR, Dunkerley DL, Friedel MH, McAllister RRJ, Reid JRW, Roshier DA, Smith MA, Walsh FJ, Wardle GM, Watson IW, Westoby M (2011) A fresh perspective for the ecology of arid Australia. J Arid Environ 75:313–329

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, and delays. Oecologia 141:282–294

    Article  PubMed  Google Scholar 

  • Onigkeit J, Twite R (2011) Future management of the Jordan River basin’s water and land resources under climate change – a scenario exercise. CESR, Kassel

    Google Scholar 

  • OPEC – Organization of the Petroleum Exporting Countries (2010) Annual statistical bulletin 2010/2011. OPEC, Vienna

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pearson RB, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson TA, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  PubMed  CAS  Google Scholar 

  • Petrů M, Tielbörger K, Belkin R, Sternberg M (2006) Life history variation of an annual plant under two opposing selective forces along a steep climatic gradient. Ecography 29:66–74

    Article  Google Scholar 

  • Petrů M, Tielbörger K (2008) Germination strategies of annual plants under changing climatic conditions: teasing apart local and regional effects. Oecologia 155:717–728

    Article  PubMed  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Pierson EA, Turner RM (1998) An 85-year study of saguaro (Carnegiea gigantea) demography. Ecology 79:2676–2693

    Google Scholar 

  • Rees M (1996) Evolutionary ecology of seed dormancy and seed size. Philos Trans R Soc Lond B Biol Sci 351:1299–1308

    Article  Google Scholar 

  • Reynolds JF, Virginia RA, Kemp PR, de Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs: effects of seasonality and degree of resource and island development. Ecol Monogr 69:69–106

    Article  Google Scholar 

  • Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the pulse-reserve paradigm for deserts of North America. Oecologia 141:194–210

    Article  PubMed  Google Scholar 

  • Reynolds JF, Stafford Smith DM, Lambin EF, Turner BL II, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  PubMed  CAS  Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci USA 98:7123–7127

    Article  PubMed  CAS  Google Scholar 

  • Romm J (2011) Desertification: the next dust bowl. Nature 478:450–451

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Chapin SF III, Armesto JJ, Berlow E, Bloom J, Dirzo R, Huber-Sannwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy PN, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc Lond B Biol Sci 367:3135–3144

    Article  PubMed  Google Scholar 

  • Salguero-Gómez R, Casper BB (2011a) A hydraulic explanation for size-specific plant shrinkage: developmental hydraulic sectoriality. New Phytol 189:229–240

    Article  PubMed  Google Scholar 

  • Salguero-Gómez R, Casper BB (2011b) Introducing short roots in a desert perennial: anatomy and spatio-temporal foraging responses to increased precipitation. New Phytol 191:173–183

    Article  PubMed  Google Scholar 

  • Salguero-Gómez R, Siewert W, Casper BB, Tielbörger K (2012) A demographic approach to study effects of climate change in desert plants. Philos Trans R Soc Lond B Biol Sci 367:3100–3114

    Article  PubMed  Google Scholar 

  • Scheiner SM, Rey-Benayas JM (1994) Global patterns of plant diversity. Evol Ecol 8:331–347

    Article  Google Scholar 

  • Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Martinez Cabrera HI, Jones CS (2008) Hydraulic integration and shrub growth form linked across continental aridity gradients. Proc Natl Acad Sci USA 105:11248–11253

    Article  PubMed  CAS  Google Scholar 

  • Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004) Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid systems. Oecologia 141:191–193

    PubMed  Google Scholar 

  • Smiatek G, Kunstmann H, Heckl A (2011) High-resolution climate change simulations for the Jordan River area. J Geophys Res Atmos 116, D16111

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seeman JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  PubMed  CAS  Google Scholar 

  • Squeo FA, Ehleringer JR, Olivares NC, Arancio G (1994) Variation in leaf level energy balance components of Encelia canescens along a precipitation gradient in north-central Chile. Rev Chil Hist Nat 67:143–155

    Google Scholar 

  • Sternberg M, Holzapfel C, Tielbörger K, Sarah P, Kigel J, Lavee H, Fleischer A, Jeltsch F, Köchy M (2011) The use and misuse of climatic gradients for evaluating climate impact on dryland ecosystems – an example for the solution of conceptual problems. In: Blanco J, Kheradmand H (eds) Climate change – geophysical foundations and ecological effects. InTech, Rijeka, pp 361–374

    Google Scholar 

  • Suazo AA, Spencer JE, Engel EC, Abella SR (2012) Responses of native and non-native Mojave Desert winter annuals to soil disturbance and water addition. Biol Invasions 14:215–227

    Article  Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315:640–642

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thornton PK, Jones PG, Owiyo T, Kruska RL, Herrero M, Orindi V, Bhadwal S, Kristjanson P, Notenbaert A, Bekele N, Omolo A (2008) Climate change and poverty in Africa: mapping hotspots of vulnerability. Afr J Agric Res 2:24–44

    Google Scholar 

  • Thornthwaite CW (1948) An approach to a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thuiller W (2007) Climate change and the ecologist. Nature 448:550–552

    Article  PubMed  CAS  Google Scholar 

  • Tielbörger K, Kadmon R (1997) Relationships between shrubs and annual communities in a sandy desert ecosystem: a three-year study. Plant Ecol 130:191–201

    Article  Google Scholar 

  • Tielbörger K, Kadmon R (2000) Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81:1544–1553

    Google Scholar 

  • Tompkins EL, Adger WN (2004) Does adaptive management of natural resources enhance resilience to climate change? Ecol Soc 9:10

    Google Scholar 

  • Turner RM (1990) Long-term vegetation change of a fully protected Sonoran Desert site. Ecology 71:464–477

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Vasek EC (1980) Creosote bush: long-lived clones in the Mojave desert. Am J Bot 67:246–255

    Article  Google Scholar 

  • Venable DL (1985) The evolutionary ecology of seed heteromorphism. Am Nat 126:577–595

    Article  Google Scholar 

  • Venable DL, Flores-Martinez A, Muller-Landau H, Parron-Gafford G (2008) Seed dispersal of desert annuals. Ecology 89:2218–2227

    Article  PubMed  Google Scholar 

  • Venable DL, Pake CE, Caprio AC (1993) Diversity and coexistence of Sonoran Desert winter annuals. Plant Species Biol 8:207–216

    Article  Google Scholar 

  • Walker MD, Wahren HD, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carrolla AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnusson B, Molaug U, Oberbauer SF, Rewan SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • White RP, Nackoney J (2003) Drylands, people, and ecosystem goods and services: a web-based geospatial analysis. World Research Institute, Washington, DC

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. Macmillan, New York

    Google Scholar 

  • Williams JW, Webb T, Richard PH, Newby P (2000) Late quaternary biomes of Canada and the eastern United States. J Biogeogr 27:585–607

    Article  Google Scholar 

  • van Willert DJ, Eller BM, Werger MJA, Brinckmann E, Ihlenfeldt H-D (1992) Life strategies of succulents in deserts: with special reference to the Namib desert. Cambridge University Press, Cambridge

    Google Scholar 

  • Yoder CK, Vivin P, Defalco LA, Seeman JR, Nowak RS (2000) Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentrations. New Phytol 145:245–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to J. Metz for providing unpublished data on plant diversity along an aridity gradient in Israel. K.T. acknowledges support from the GLOWA Jordan River project, funded by the German Ministry of Science and Education (BMBF), as well as additional funding by the German Research Foundation (DFG; TI338_11-1, and TI338_12-1). R.S.-G acknowledges support from the Evolutionary Biodemography Laboratory of the Max Planck Institute for Demographic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Tielbörger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tielbörger, K., Salguero-Gómez, R. (2014). Some Like It Hot: Are Desert Plants Indifferent to Climate Change?. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_12

Download citation

Publish with us

Policies and ethics