Skip to main content

The Diet as a Cause of Human Prostate Cancer

  • Conference paper
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic “catastrophe” affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic “catastrophe” has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of fruits and vegetables, especially tomatoes and crucifers, might act to attenuate the ravages of the chronic or recurrent inflammatory processes. Specifically, nutritional agents might prevent PIA lesions or reduce the propensity of PIA lesions to suffer “catastrophic” epigenome corruption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PSA:

Prostate-specific antigen

BPH:

Benign prostatic hyperplasia

PIA:

Proliferative inflammatory atrophy

PIN:

Prostatic intraepithelial neoplasia

PhIP:

Phenylimidazopyridine

GST:

Glutathione S-transferase

TLRs:

Toll-like receptors

COX:

Cyclooxygenase

NSAIDs:

Non-steroidal anti-inflammatory drugs

References

  1. Ahn YH, Hwang Y, Liu H et al (2010) Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc Natl Acad Sci USA 107:9590–9595

    Article  PubMed  CAS  Google Scholar 

  2. Aikata H, Takaishi H, Kawakami Y et al (2000) Telomere reduction in human liver tissues with age and chronic inflammation. Exp Cell Res 256:578–582

    Article  PubMed  CAS  Google Scholar 

  3. Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92:5258–5265

    Article  PubMed  CAS  Google Scholar 

  4. Antonarakis ES, Heath EI, Walczak JR et al (2009) Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 27:4986–4993

    Article  PubMed  CAS  Google Scholar 

  5. Bardia A, Ebbert JO, Vierkant RA et al (2007) Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. J Natl Cancer Inst 99:881–889

    Article  PubMed  CAS  Google Scholar 

  6. Bardia A, Platz EA, Yegnasubramanian S et al (2009) Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Curr Opin Pharmacol 9:419–426

    Article  PubMed  CAS  Google Scholar 

  7. Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  PubMed  CAS  Google Scholar 

  8. Bordas M, Moyano E, Puignou L et al (2004) Formation and stability of heterocyclic amines in a meat flavour model system. Effect of temperature, time and precursors. J Chromatogr B Analyt Technol Biomed Life Sci 802:11–17

    Article  PubMed  CAS  Google Scholar 

  9. Brooks JD, Weinstein M, Lin X et al (1998) CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia (PIN). Cancer Epid Biom Prev 7:531–536

    CAS  Google Scholar 

  10. Brooks JD, Metter EJ, Chan DW et al (2001) Plasma selenium level before diagnosis and the risk of prostate cancer development. J Urol 166:2034–2038

    Article  PubMed  CAS  Google Scholar 

  11. Carpten J, Nupponen N, Isaacs S et al (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184

    Article  PubMed  CAS  Google Scholar 

  12. Caruso C, Balistreri CR, Candore G et al (2009) Polymorphisms of pro-inflammatory genes and prostate cancer risk: a pharmacogenomic approach. Cancer Immunol Immunother 58:1919–1933

    Article  PubMed  CAS  Google Scholar 

  13. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  PubMed  CAS  Google Scholar 

  14. Coffey DS (2001) Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology 57:31–38

    Article  PubMed  CAS  Google Scholar 

  15. Cross AJ, Peters U, Kirsh VA et al (2005) A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res 65:11779–11784

    Article  PubMed  CAS  Google Scholar 

  16. De Marzo AM, Marchi VL, Epstein JI et al (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155:1985–1992

    Article  PubMed  Google Scholar 

  17. De Marzo AM, Platz EA, Epstein JI et al (2006) A working group classification of focal prostate atrophy lesions. Am J Surg Pathol 30:1281–1291

    Article  PubMed  Google Scholar 

  18. De Marzo AM, Platz EA, Sutcliffe S et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269

    Article  PubMed  Google Scholar 

  19. Dennis LK, Lynch CF, Torner JC (2002) Epidemiologic association between prostatitis and prostate cancer. Urology 60:78–83

    Article  PubMed  Google Scholar 

  20. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  21. Elkahwaji JE, Zhong W, Hopkins WJ et al (2007) Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 67:14–21

    Article  PubMed  Google Scholar 

  22. Elkahwaji JE, Hauke RJ, Brawner CM (2009) Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br J Cancer 101:1740–1748

    Article  PubMed  CAS  Google Scholar 

  23. Fang J, Metter EJ, Landis P et al (2001) Low levels of prostate-specific antigen predict long-term risk of prostate cancer: results from the Baltimore longitudinal study of aging. Urology 58:411–416

    Article  PubMed  CAS  Google Scholar 

  24. Gann PH, Hennekens CH, Stampfer MJ (1995) A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. JAMA 273:289–294

    Article  PubMed  CAS  Google Scholar 

  25. Gann PH, Ma J, Giovannucci E et al (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 59:1225–1230

    PubMed  CAS  Google Scholar 

  26. Giovannucci E, Rimm EB, Colditz GA et al (1993) A prospective study of dietary fat and risk of prostate cancer [see comments]. J Natl Cancer Inst 85:1571–1579

    Article  PubMed  CAS  Google Scholar 

  27. Haenszel W, Kurihara M (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 40:43–68

    PubMed  CAS  Google Scholar 

  28. Haffner MC, Aryee MJ, Toubaji A et al (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    Article  PubMed  CAS  Google Scholar 

  29. Hahn MA, Hahn T, Lee DH et al (2008) Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 68:10280–10289

    Article  PubMed  CAS  Google Scholar 

  30. Henderson CJ, Smith AG, Ure J et al (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S- transferases. Proc Natl Acad Sci USA 95:5275–5280

    Article  PubMed  CAS  Google Scholar 

  31. Hmadcha A, Bedoya FJ, Sobrino F et al (1999) Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 190:1595–1604

    Article  PubMed  CAS  Google Scholar 

  32. Isaacs JT (1984) The aging ACI/Seg versus Copenhagen male rat as a model system for the study of prostatic carcinogenesis. Cancer Res 44:5785–5796

    PubMed  CAS  Google Scholar 

  33. Iwata T, Schultz D, Hicks J et al (2010) MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS ONE 5:e9427

    Article  PubMed  Google Scholar 

  34. Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21

    Article  PubMed  CAS  Google Scholar 

  35. Jacobs EJ, Rodriguez C, Mondul AM et al (2005) A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J Natl Cancer Inst 97:975–980

    Article  PubMed  Google Scholar 

  36. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  37. Kidd LC, Stillwell WG, Yu MC et al (1999) Urinary excretion of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in White, African–American, and Asian–American men in Los Angeles county. Cancer Epidemiol Biomarkers Prevent 8:439–445

    CAS  Google Scholar 

  38. Kinouchi Y, Hiwatashi N, Chida M et al (1998) Telomere shortening in the colonic mucosa of patients with ulcerative colitis. J Gastroenterol 33:343–348

    Article  PubMed  CAS  Google Scholar 

  39. Knize MG, Salmon CP, Mehta SS et al (1997) Analysis of cooked muscle meats for heterocyclic aromatic amine carcinogens. Mutat Res 376:129–134

    Article  PubMed  CAS  Google Scholar 

  40. Koutros S, Berndt SI, Sinha R et al (2009) Xenobiotic metabolizing gene variants, dietary heterocyclic amine intake, and risk of prostate cancer. Cancer Res 69:1877–1884

    Article  PubMed  CAS  Google Scholar 

  41. Krieger M, Herz J (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 63:601–637

    Article  PubMed  CAS  Google Scholar 

  42. Lee SH, Hu LL, Gonzalez-Navajas J et al (2010) ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 16:665–670

    Article  PubMed  CAS  Google Scholar 

  43. Le Marchand L, Kolonel LN, Wilkens LR et al (1994) Animal fat consumption and prostate cancer: a prospective study in Hawaii. Epidemiology 5:276–282

    Article  PubMed  Google Scholar 

  44. Lijinsky W, Shubik P (1964) Benzo(a)pyrene and other polynuclear hydrocarbons in charcoal-broiled meat. Science 145:53–55

    Article  PubMed  CAS  Google Scholar 

  45. Lin X, Tascilar M, Lee W-H et al (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159:1815–1826

    Article  PubMed  CAS  Google Scholar 

  46. Lippman SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 301:39–51

    Article  PubMed  CAS  Google Scholar 

  47. Mahmud S, Franco E, Aprikian A (2004) Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. Br J Cancer 90:93–99

    Article  PubMed  CAS  Google Scholar 

  48. Maser RS, DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297:565–569

    Article  PubMed  CAS  Google Scholar 

  49. Meeker AK, Hicks JL, Platz EA et al (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409

    PubMed  CAS  Google Scholar 

  50. Murphy AB, Macejko A, Taylor A et al (2009) Chronic prostatitis: management strategies. Drugs 69:71–84

    Article  PubMed  CAS  Google Scholar 

  51. Nakai Y, Nelson WG, De Marzo AM (2007) The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res 67:1378–1384

    Article  PubMed  CAS  Google Scholar 

  52. Nakayama M, Bennett CJ, Hicks JL et al (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163:923–933

    Article  PubMed  CAS  Google Scholar 

  53. Narayanan BA, Condon MS, Bosland MC et al (2003) Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism(s). Clin Cancer Res 9:3503–3513

    PubMed  CAS  Google Scholar 

  54. Narayanan BA, Narayanan NK, Pittman B et al (2004) Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 10:7727–7737

    Article  PubMed  CAS  Google Scholar 

  55. Naslund MJ, Strandberg JD, Coffey DS (1988) The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J Urol 140:1049–1053

    PubMed  CAS  Google Scholar 

  56. Nelson CP, Kidd LC, Sauvageot J et al (2001) Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5- b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res 61:103–109

    PubMed  CAS  Google Scholar 

  57. Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349:366–381

    Article  PubMed  CAS  Google Scholar 

  58. Nelson WG, De Marzo AM, Yegnasubramanian S (2009) Epigenetic alterations in human prostate cancers. Endocrinology 150:3991–4002

    Article  PubMed  CAS  Google Scholar 

  59. Palapattu GS, Sutcliffe S, Bastian PJ et al (2005) Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26:1170–1181

    Article  PubMed  CAS  Google Scholar 

  60. Parsons JK, Nelson CP, Gage WR et al (2001) GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. Prostate 49:30–37

    Article  PubMed  CAS  Google Scholar 

  61. Platz EA, Rohrmann S, Pearson JD et al (2005) Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore longitudinal study of aging. Cancer Epidemiol Biomarkers Prev 14:390–396

    Article  PubMed  CAS  Google Scholar 

  62. Platz EA, Leitzmann MF, Visvanathan K et al (2006) Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst 98:1819–1825

    Article  PubMed  CAS  Google Scholar 

  63. Platz EA, Till C, Goodman PJ et al (2009) Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 18:2807–2813

    Article  PubMed  CAS  Google Scholar 

  64. Putzi MJ, De Marzo AM (2000) Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56:828–832

    Article  PubMed  CAS  Google Scholar 

  65. Ritchie KJ, Walsh S, Sansom OJ et al (2009) Markedly enhanced colon tumorigenesis in ApcMin mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 106:20859–20864

    Article  PubMed  CAS  Google Scholar 

  66. Rohrmann S, Nelson WG, Rifai N et al (2007) Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab 92:2519–2525

    Article  PubMed  CAS  Google Scholar 

  67. Ruska KM, Sauvageot J, Epstein JI (1998) Histology and cellular kinetics of prostatic atrophy. Am J Surg Pathol 22:1073–1077

    Article  PubMed  CAS  Google Scholar 

  68. Sakr WA, Grignon DJ, Crissman JD et al (1994) High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8:439–443

    PubMed  CAS  Google Scholar 

  69. Seethalakshmi L, Bala RS, Malhotra RK et al (1996) 17 beta-estradiol induced prostatitis in the rat is an autoimmune disease. J Urol 156:1838–1842

    Article  PubMed  CAS  Google Scholar 

  70. Sfanos KS, Sauvageot J, Fedor HL et al (2008) A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68:306–320

    Article  PubMed  CAS  Google Scholar 

  71. Sfanos KS, Wilson BA, De Marzo AM et al (2009) Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc Natl Acad Sci USA 106:3443–3448

    Article  PubMed  CAS  Google Scholar 

  72. Sharma OP, Adlercreutz H, Strandberg JD et al (1992) Soy of dietary source plays a preventive role against the pathogenesis of prostatitis in rats. J Steroid Biochem Mol Biol 43:557–564

    Article  PubMed  CAS  Google Scholar 

  73. Shimizu H, Ross RK, Bernstein L et al (1991) Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 63:963–966

    Article  PubMed  CAS  Google Scholar 

  74. Shirai T, Sano M, Tamano S et al (1997) The prostate: a target for carcinogenicity of 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res 57:195–198

    PubMed  CAS  Google Scholar 

  75. Stoker TE, Robinette CL, Britt BH et al (1999) Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate. Biol Reprod 61:1636–1643

    Article  PubMed  CAS  Google Scholar 

  76. Stoker TE, Robinette CL, Cooper RL (1999) Perinatal exposure to estrogenic compounds and the subsequent effects on the prostate of the adult rat: evaluation of inflammation in the ventral and lateral lobes. Reprod Toxicol 13:463–472

    Article  PubMed  CAS  Google Scholar 

  77. Sun J, Wiklund F, Zheng SL et al (2005) Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97:525–532

    Article  PubMed  CAS  Google Scholar 

  78. Sutcliffe S, Zenilman JM, Ghanem KG et al (2006) Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J Urol 175:1937–1942

    Article  PubMed  Google Scholar 

  79. Sutcliffe S, Platz EA (2008) Inflammation and prostate cancer: a focus on infections. Curr Urol Rep 9:243–249

    Article  PubMed  Google Scholar 

  80. Suzuki H, Kurihara Y, Takeya M et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296

    Article  PubMed  CAS  Google Scholar 

  81. Suzuki H, Toyota M, Kondo Y et al (2009) Inflammation-related aberrant patterns of DNA methylation: detection and role in epigenetic deregulation of cancer cell transcriptome. Methods Mol Biol 512:55–69

    Article  PubMed  CAS  Google Scholar 

  82. Tang D, Liu JJ, Bock CH et al (2007) Racial differences in clinical and pathological associations with PhIP-DNA adducts in prostate. Int J Cancer 121:1319–1324

    Article  PubMed  CAS  Google Scholar 

  83. Thompson IM, Goodman PJ, Tangen CM et al (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349:215–224

    Article  PubMed  CAS  Google Scholar 

  84. Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  PubMed  CAS  Google Scholar 

  85. Turesky RJ (2007) Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicol Lett 168:219–227

    Article  PubMed  CAS  Google Scholar 

  86. van Leenders GJ, Gage WR, Hicks JL et al (2003) Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 162:1529–1537

    Article  PubMed  Google Scholar 

  87. Wakabayashi K, Ushiyama H, Takahashi M et al (1993) Exposure to heterocyclic amines. Environ Health Perspect 99:129–134

    Article  PubMed  CAS  Google Scholar 

  88. Walters DG, Young PJ, Agus C et al (2004) Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis 25:1659–1669

    Article  PubMed  CAS  Google Scholar 

  89. Xiang Y, Wang Z, Murakami J et al (2003) Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2′, 5′-oligoadenylates. Cancer Res 63:6795–6801

    PubMed  CAS  Google Scholar 

  90. Xu J, Zheng SL, Komiya A et al (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321–325

    Article  PubMed  CAS  Google Scholar 

  91. Yegnasubramanian S, Kowalski J, Gonzalgo ML et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986

    Article  PubMed  CAS  Google Scholar 

  92. Yegnasubramanian S, Wu Z, Haffner MC et al (2011) Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences. BMC Genomics 12:213

    Article  Google Scholar 

  93. Yoshizawa K, Willett WC, Morris SJ et al (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 90:1219–1224

    Article  PubMed  CAS  Google Scholar 

  94. Zha S, Gage WR, Sauvageot J et al (2001) Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 61:8617–8623

    PubMed  CAS  Google Scholar 

  95. Zheng SL, Augustsson-Balter K, Chang B et al (2004) Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden study. Cancer Res 64:2918–2922

    Article  PubMed  CAS  Google Scholar 

  96. Zhou A, Paranjape J, Brown TL et al (1997) Interferon action and apoptosis are defective in mice devoid of 2′,5′- oligoadenylate-dependent RNase L. EMBO J 16:6355–6363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nelson, W.G., DeMarzo, A.M., Yegnasubramanian, S. (2014). The Diet as a Cause of Human Prostate Cancer. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics