Skip to main content

Models of Gene Regulation: Integrating Modern Knowledge into the Random Boolean Network Framework

  • Chapter
Evolution, Complexity and Artificial Life

Abstract

Kauffman’s random Boolean networks are abstract, high level models for dynamical behavior of gene regulatory networks. They simulate the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by its simplicity, suffered from fundamental shortcomings unveiled by the recent advances in genetics and biology. Using these new discoveries, the model can be improved to reflect current knowledge. Artificial topologies, such as scale-free or hierarchical, are now believed to be closer to that of gene regulatory networks. We have studied actual biological organisms and used parts of their genetic regulatory networks in our models. We also have addressed the improbable full synchronicity of the event taking place on Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Errata to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-37577-4_1810.1007/978-3-642-37577-4_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson, H.: Genetics: what is a gene? Nature 441(7092), 398–401 (2006)

    Article  Google Scholar 

  2. Pennisi, E.: GENOMICS: DNA study forces rethink of what it means to be a gene. Science 316(5831), 1556–1557 (2007)

    Article  Google Scholar 

  3. Nowak, MA.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge, MA (2006)

    Google Scholar 

  4. Albert, R.: Boolean modeling of genetic regulatory networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 459–479. Springer, Berlin (2004)

    Google Scholar 

  5. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT, Cambridge, MA (2001)

    Google Scholar 

  6. Edwards, R., Glass, L.: A calculus for relating the dynamics and structure of complex biological networks. In: Berry, R.S., Jortner, J. (eds.) Advances in Chemical Physics, vol. 132, pp. 151–178. Wiley, New York (2006)

    Google Scholar 

  7. Vohradsky, J.: Neural model of the genetic network. J. Biol. Chem. 276(39), 36168–36173 (2001)

    Article  Google Scholar 

  8. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422(6932), 633–637 (2003)

    Article  Google Scholar 

  9. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)

    Article  Google Scholar 

  10. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage {lambda}-infected escherichia coli cells. Genetics 149(4), 1633–1648 (1998)

    Google Scholar 

  11. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  12. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  Google Scholar 

  13. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and control. Science 309(5743), 2010–2013 (2005)

    Article  Google Scholar 

  14. Leclerc, R.D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4, 214–218 (2008)

    Article  Google Scholar 

  15. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  16. Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D. 185, 45–66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Roussel, M.R., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3(4), 274–284 (2006)

    Article  Google Scholar 

  18. Drossel, B.: Random boolean networks. Rev. Nonlinear Dynam. Complex. 1, 69–110 (2008)

    Article  Google Scholar 

  19. Kauffman, S.A.: Investigations. Oxford University Press, New York (2000)

    Google Scholar 

  20. Serra, R., Villani, M., Agostini, L.: On the dynamics of random boolean networks with scale-free outgoing connections. Phys. A Stat. Mech. Appl. 339(3–4), 665–673 (2004)

    Article  MathSciNet  Google Scholar 

  21. Aldana, M., Cluzel, P.: A natural class of robust networks. Proc. Natl. Acad. Sci. USA 100(15), 8710–8714 (2003)

    Article  Google Scholar 

  22. Darabos, C., Di Cunto, F., Tomassini, M., Moore, J.H., Provero, P., Giacobini, M.: Additive functions in boolean models of gene regulatory network modules. PLoS One 6(11), e25110 (2011)

    Article  Google Scholar 

  23. Mesot, B., Teuscher, C.: Critical values in asynchronous random boolean networks. In: Banzhaf, W. (ed.) Advances in Artificial Life, ECAL2003. Lecture Notes in Artificial Intelligence, vol. 2801, pp. 367–376. Springer, Berlin (2003)

    Google Scholar 

  24. Gershenson, C.: Updating schemes in random Boolean networks: do they really matter? In: Pollack, J. (ed.) Artificial Life IX Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, pp. 238–243. MIT, Cambridge, MA (2004)

    Google Scholar 

  25. Darabos, C., Tomassini, M., Giacobini, M.: Dynamics of unperturbed and noisy generalized boolean networks. J. Theor. Biol. 260(4), 531–544 (2009)

    Article  MathSciNet  Google Scholar 

  26. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  27. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  28. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  29. Aldana, M., Balleza, E., Kauffman, S.A., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  30. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants LM009012, LM010098, AI59694, by the Swiss National Science Foundation grant PBLAP3-136923, and by Neuroscience Program of the Compagnia di San Paolo in Torino. The authors are grateful to Luca Ferreri for his precious help with statistical elaborations and the corresponding figures, and to Joshua L. Payne for his invaluable contribution to the discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Darabos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Darabos, C., Giacobini, M., Moore, J.H., Tomassini, M. (2014). Models of Gene Regulation: Integrating Modern Knowledge into the Random Boolean Network Framework. In: Cagnoni, S., Mirolli, M., Villani, M. (eds) Evolution, Complexity and Artificial Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37577-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37577-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37576-7

  • Online ISBN: 978-3-642-37577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics