Supporting Decision-Making for Self-Adaptive Systems: From Goal Models to Dynamic Decision Networks

  • Nelly Bencomo
  • Amel Belaggoun
Conference paper

DOI: 10.1007/978-3-642-37422-7_16

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7830)
Cite this paper as:
Bencomo N., Belaggoun A. (2013) Supporting Decision-Making for Self-Adaptive Systems: From Goal Models to Dynamic Decision Networks. In: Doerr J., Opdahl A.L. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2013. Lecture Notes in Computer Science, vol 7830. Springer, Berlin, Heidelberg

Abstract

[Context/Motivation] Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. [Questions/Problems] One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. [Principal ideas/results] In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs.

Keywords

requirements specification-methodologies goal models dynamic decision networks bayesian decision theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nelly Bencomo
    • 1
  • Amel Belaggoun
    • 1
  1. 1.INRIA Paris - RocquencourtFrance

Personalised recommendations