Classifying Online Social Network Users through the Social Graph

  • Cristina Pérez-Solà
  • Jordi Herrera-Joancomartí
Conference paper

DOI: 10.1007/978-3-642-37119-6_8

Volume 7743 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Pérez-Solà C., Herrera-Joancomartí J. (2013) Classifying Online Social Network Users through the Social Graph. In: Garcia-Alfaro J., Cuppens F., Cuppens-Boulahia N., Miri A., Tawbi N. (eds) Foundations and Practice of Security. FPS 2012. Lecture Notes in Computer Science, vol 7743. Springer, Berlin, Heidelberg

Abstract

In this paper, we address the problem of classifying online social network users using a naively anonymized version of a social graph. We use two main user attributes defined by the graph structure to build an initial classifier, node degree and clustering coefficient, and then exploit user relationships to build a second classifier. We describe how to combine these two classifiers to build an Online Social Network (OSN) user classifier and then we evaluate the performance of our architecture by trying to solve two different classification problems (a binary and a multiclass problem) using data extracted from Twitter. Results show that the proposed classifier is sound and that both classification problems are feasible to solve by an attacker who is able to obtain a naively anonymized version of the social graph.

Keywords

Online Social Networks Relational Classifiers Graph Anonymization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristina Pérez-Solà
    • 1
  • Jordi Herrera-Joancomartí
    • 1
    • 2
  1. 1.Dept. d’Enginyeria de la Informació i les ComunicacionsUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Internet Interdisciplinary Institute (IN3)UOCSpain