Comparing Close Destination and Route-Based Similarity Metrics for the Analysis of Map User Trajectories

  • Ali Tahir
  • Gavin McArdle
  • Michela Bertolotto
Conference paper

DOI: 10.1007/978-3-642-37087-8_9

Volume 7820 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Tahir A., McArdle G., Bertolotto M. (2013) Comparing Close Destination and Route-Based Similarity Metrics for the Analysis of Map User Trajectories. In: Liang S.H.L., Wang X., Claramunt C. (eds) Web and Wireless Geographical Information Systems. W2GIS 2013. Lecture Notes in Computer Science, vol 7820. Springer, Berlin, Heidelberg

Abstract

Movement is a ubiquitous phenomenon in the physical and virtual world. Analysing movement can reveal interesting trends and patterns. In the Human-Computer Interaction (HCI) domain, eye and mouse movements reveal the interests and intentions of users. By identifying common HCI patterns in the spatial domain, profiles containing the spatial interests of users can be generated. These profiles can be used to address the spatial information overload problem through map personalisation. This paper presents the analysis and findings of a case study of users performing spatial tasks on a campus map. Mouse movement was recorded and analysed as users performed specific spatial tasks. The tasks correspond to the mouse trajectories produced while interacting with the Web map. When multiple users conduct similar and dissimilar spatial tasks, it becomes interesting to observe the behaviour patterns of these users. Clustering and geovisual analysis help to understand large movement datasets such as mouse movements. The knowledge gained through this analysis can be used to strengthen map personalisation techniques. In this work, we apply OPTICS clustering algorithm to a set of map user trajectories. We focus on two similarity measures and compare the results obtained with both when applied to particular saptial tasks carried out by multiple users. In particular, we show how route-based similarity, an advanced distance measure, performs better for spatial tasks involving scanning of the map area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali Tahir
    • 1
  • Gavin McArdle
    • 2
  • Michela Bertolotto
    • 1
  1. 1.School of Computer Science and InformaticsUniversity College Dublin (UCD)DublinIreland
  2. 2.National Centre for GeocomputationNational University of Ireland Maynooth (NUIM)MaynoothIreland