Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7777))

Abstract

In this paper we study a new, generalized version of the well-known group testing problem. In the classical model of group testing we are given n objects, some of which are considered to be defective. We can test certain subsets of the objects whether they contain at least one defective element. The goal is usually to find all defectives using as few tests as possible. In our model the presence of defective elements in a test set Q can be recognized if and only if their number is large enough compared to the size of Q. More precisely for a test Q the answer is yes if and only if there are at least α|Q| defective elements in Q for some fixed α.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlswede, R., Deppe, C., Lebedev, V.: Finding one of D defective elements in some group testing models. Probl. Inf. Transm. 48(2), 173–181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Damaschke, P.: The Algorithmic Complexity of Chemical Treshold Testing. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 205–216. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. De Bonis, A., Gargano, L., Vaccaro, U.: Efficient algorithms for chemical threshold testing problems. Theoret. Comput. Sci. 259(1-2), 493–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorfman, R.: The Detection of defective members of large populations. Ann. Math. Statistics 14, 436–440 (1943)

    Article  Google Scholar 

  5. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 1st edn. World Scientific (1994)

    Google Scholar 

  6. Katona, G.O.H.: On separating systems of a finite set. J. Combinatorial Theory 1, 174–194 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Katona, G.O.H.: Rènyi and the Combinatorial Search Problems. Studia Sci. Math. Hungar. 26, 363–378 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Wegener, I.: On separating systems whose elements are sets of at most k elements. Discrete Math 28, 219–222 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerbner, D., Keszegh, B., Pálvölgyi, D., Wiener, G. (2013). Density-Based Group Testing. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36899-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36898-1

  • Online ISBN: 978-3-642-36899-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics