Skip to main content

Investigation on Upper Limb’s Muscle Utilizing EMG Signal

  • Conference paper
Book cover Trends in Intelligent Robotics, Automation, and Manufacturing (IRAM 2012)

Abstract

Neurorehabilitation aims to aid the recovery/rehabilitation of neurological patients following strokes, spinal cord injuries, traumatic brain injuries as well as other neurological diseases. The utilization of a rehabilitative robot can offer a repetitive and intensive rehabilitation training which helps improve the recovery rate and introduce a channel for patients to train independently or with minimal supervision. The future system will leverage on the utilization of EMG signal to drive the control system controlling the rehabilitative robot. Hence, it is necessary to investigate the influence of each muscle to the upper extremity’s movement. This paper presents the comprehensive observation on how 8 different muscles contribute to the flexion extension and abduction adduction movement of the upper limb. These muscles are biceps, triceps, deltoid, latissimus dorsi, brachioradialis, brachialis, flexor carpi radialis and flexor carpi ulnaris. The impact of each muscle to the upper limb’s movement will help in determining the EMG-force/torque relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hademenos, G.J., Massoud, T.F.: Biophysical Mechanism of Stroke. American Heart Association, 2067–2077 (1997)

    Google Scholar 

  2. Hademenos, G.J., Massoud, T.F.: The Physics of Cerebrovascular Diseases: Biophysical Mechanism of Development, Diagnosis and Therapy (1997)

    Google Scholar 

  3. Grad, Y., Sievert, H., Nishri, B., Stone, G.W., Katzen, B.T., Yodfat, O., Higashida, R., Harris, D., Wakhloo, A.K., Assaf, Y., Norbash, A., Bushi, D., Lieber, B.B.: A Novel Endovascular Device for Emboli Rerouting: Part I: Evaluation in a Swine Model. Journal of the American Heart Association 2860–2866 (2008)

    Google Scholar 

  4. Stein, G.D., Hoffman, S.W.: Concepts of CNS plasticity in the context of brain damage and repair. The Journal of Head Trauma Rehabilitation 18, 317–341 (2003)

    Article  Google Scholar 

  5. Kexin, X., Jian, H., Qi, X., Yongji, W.: Design of a wearable rehabilitation robotic hand actuated by pneumatic artificial muscles. In: Asian Control Conference, ASCC 2009, pp. 740–744 (2009)

    Google Scholar 

  6. Sucar, L.E., Leder, R., Hernandez, J., Sanchez, I., Azcarate, G.: Clinical evaluation of a low-cost alternative for stroke rehabilitation. In: IEEE International Conference on Rehabilitation Robotics, ICORR 2009, pp. 863–866 (2009)

    Google Scholar 

  7. Turolla, A., Tonin, P., Zucconi, C., Agostini, M., Piccione, M., Piron, L.: Reinforcement Feedback in Virtual Environment vs. Conventional Physical Therapy for arm motor deficit after Stroke. In: Virtual Rehabilitation, pp. 49–52 (2007)

    Google Scholar 

  8. Piron, L., Tombolini, A., Turolla, C., Agostini, M., Dam, M., Santarello, G., Piccione, F., Tonin, P.: Reinforced Feedback in Virtual Environment Facilitates the Arm Motor Recovery in Patients after a Recent Stroke. In: Virtual Rehabilitation, pp. 121–123 (2007)

    Google Scholar 

  9. Rosati, G., Gallina, P., Masiero, S.: Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation. IEEE Transaction on Neural Systems and Rehabilitation Engineering 15, 560–569 (2007)

    Article  Google Scholar 

  10. Dapeng, Y., Jingdong, Z., Yikun, G., Li, J., Hong, L.: EMG pattern recognition and grasping force estimation: Improvement to the myocontrol of multi-DOF prosthetic hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 516–521 (2009)

    Google Scholar 

  11. Siegler, S., Hillstrom, H.J., Freedman, W., Moskowitz, G.: Effect of myoelectric signal processing on relationship between muscle force and processed EMG. Arm. J. Phys. Med., 130–149 (1985)

    Google Scholar 

  12. Merletti, R., Sabbahi, M.A., De Luca, C.J.: Median frequency of the myoelectric signal: Effects of muscle ischemia and cooling. Eur. J. Appl. Physiol. Occup. Pysiol., 258–265 (1984)

    Google Scholar 

  13. Petrofsky, J., Laymon, M.: The relationship between muscle temperature, MUPA conduction velocity and the amplitude and frequency components of the surface EMG during isometric contractions. Basic Appl. Myol., 61–74 (2005)

    Google Scholar 

  14. Broman, H., Bilotto, G., De Luca, C.J.: Myoelectric signal conduction velocity and spectral parameters influence of force and time. J. Appl. Physiol., 1428–1437 (1985)

    Google Scholar 

  15. Bilodeau, M., Arsenault, A.B., Gravel, D., Bourbonnais, D.: The influence of an increase in the level of force on the EMG power spectrum of elbow extensors. Eur. J. Appl. Physiol. Occup. Pysiol., 461–466 (1990)

    Google Scholar 

  16. Oyong, A.W., Parasuraman, S., Jauw, V.L.: Estimation of Muscle Forces and Joint Torque from EMG using SA Process. In: IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES 2010), Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  17. Parasuraman, S., Arif, W.O., Veronica, L.J.: AI Technique to estimate muscle force and joint torque upper extremity. Key Engineering Material 467-469, 788–793 (2011)

    Article  Google Scholar 

  18. Oyong, A.W., Parasuraman, S., Jauw, V.L.: Robot Assisted Stroke Rehabilitation: Estimation of Muscle Force/Joint Torque from EMG using GA. In: IEEE EMBS Conference on Biomedical Engineering & Sciences (IECBES 2010), Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  19. Patton, K.T., Thibodeau, G.A.: Anthony’s Textbook of Anatomy & Physiology. In: Wilhelm, T. (ed.), 19th edn. (2010)

    Google Scholar 

  20. Jacob, R., Moshe, B., Moshe, B.F., Mircea, A.: A Myosignal based powered exoskeleton system. IEEE Transactions on System, Man and Cybernetics 31(3) (2001)

    Google Scholar 

  21. Rhoades, R.A., Bell, D.R.: Medical Physiology: Principal for Clinical Medical, 3rd edn. Lippincott Williams & Wilkins

    Google Scholar 

  22. Kenneth, S.S.: Anatomy&Physiology: The Unity of Form and Function, 4th edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jauw, V.L., Parasuraman, S. (2012). Investigation on Upper Limb’s Muscle Utilizing EMG Signal. In: Ponnambalam, S.G., Parkkinen, J., Ramanathan, K.C. (eds) Trends in Intelligent Robotics, Automation, and Manufacturing. IRAM 2012. Communications in Computer and Information Science, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35197-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35197-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35196-9

  • Online ISBN: 978-3-642-35197-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics