Skip to main content

Partition Cortical Surfaces into Supervertices: Method and Application

  • Conference paper
Book cover Mesh Processing in Medical Image Analysis 2012 (MeshMed 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7599))

Included in the following conference series:

Abstract

Many problems in computer vision and biomedical image analysis benefit from representing an image as a set of superpixels or supervoxels. Inspired by this, we propose to partition a cortical surface into a collection of small patches, namely supervertices, with quasi-uniform size and coverage, compactness, and also smooth boundaries that align sulcal fundi or gyral crest curves on cortical surfaces. The ultimate goal of supervertices partition of the cortical surfaces is to use supervertices as primitives for cortical surface analysis, such as the extraction of sulcal fundi or gyral crest curves by linking boundaries of supervertices, and also the parcellation of cortical surfaces by labeling supervertices instead of vertices. We formulate the supervertices partition as an energy minimization problem and optimize it with graph cuts. Specifically, our energy function encourages the supervertices with compact shapes and smooth boundaries at flat cortical regions and also the supervertices with boundaries aligned with the sulcal fundi or gyral crest curves at highly bended cortical regions. The method has been successfully applied to cortical surfaces of brain MR images in NAMIC and MSC datasets. Both qualitative and quantitative evaluation results demonstrate its validity. We also show an application, i.e., extraction of gyral crest curves on cortical surfaces by linking boundaries of supervertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV, pp. 10–17 (2003)

    Google Scholar 

  2. Moore, A.P., et al.: Superpixel lattices. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  3. Levinshtein, A., et al.: TurboPixels: Fast superpixels using geometric flows. IEEE Trans. PAMI 31, 2290–2297 (2009)

    Article  Google Scholar 

  4. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and Supervoxels in an Energy Optimization Framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Liu, M., et al.: Entropy rate superpixel segmentation. In: CVPR, pp. 2097–2104 (2011)

    Google Scholar 

  6. Zhang, Y., et al.: Superpixels via pseudo-Boolean optimization. In: ICCV, pp. 1387–1394 (2011)

    Google Scholar 

  7. Zeng, G., et al.: Structure-sensitive superpixels via geodesic distance. In: ICCV, pp. 447–454 (2011)

    Google Scholar 

  8. Wang, J., Wang, X.: VCells: Simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations. IEEE Trans. PAMI 34, 1241–1247 (2012)

    Article  Google Scholar 

  9. Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple Hypothesis Video Segmentation from Superpixel Flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Andres, B., et al.: 3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Med. Image Anal. 16, 796–805 (2012)

    Article  Google Scholar 

  11. Lucchi, A., et al.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31, 474–486 (2012)

    Article  Google Scholar 

  12. Fulkerson, B., et al.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV, pp. 670–677 (2009)

    Google Scholar 

  13. Tighe, J., Lazebnik, S.: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 352–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006)

    Article  Google Scholar 

  15. Pantazis, D., et al.: Comparison of landmark-based and automatic methods for cortical surface registration. Neuroimage 49, 2479–2493 (2010)

    Article  Google Scholar 

  16. http://surfer.nmr.mgh.harvard.edu/

  17. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. PNAS 95, 8431–8435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Boykov, Y., et al.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 21, 1222–1239 (2001)

    Article  Google Scholar 

  19. http://www.insight-journal.org/midas/item/view/2467

  20. Li, G., et al.: An automated pipeline for cortical sulcal fundi extraction. Med. Image Anal. 14, 343–359 (2010)

    Article  Google Scholar 

  21. Li, G., et al.: Automatic cortical sulcal parcellation based on surface principal direction flow field tracking. Neuroimage 46, 923–937 (2009)

    Article  Google Scholar 

  22. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. PAMI (in press)

    Google Scholar 

  23. Levinshtein, A., et al.: Optimal image and video closure by superpixel grouping. IJCV 100, 99–119 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, G., Nie, J., Shen, D. (2012). Partition Cortical Surfaces into Supervertices: Method and Application. In: Levine, J.A., Paulsen, R.R., Zhang, Y. (eds) Mesh Processing in Medical Image Analysis 2012. MeshMed 2012. Lecture Notes in Computer Science, vol 7599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33463-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33463-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33462-7

  • Online ISBN: 978-3-642-33463-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics