Gaussian Mixture Background Modelling Optimisation for Micro-controllers

  • Claudio Salvadori
  • Dimitrios Makris
  • Matteo Petracca
  • Jesus Martinez-del-Rincon
  • Sergio Velastin
Conference paper

DOI: 10.1007/978-3-642-33179-4_24

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7431)
Cite this paper as:
Salvadori C., Makris D., Petracca M., Martinez-del-Rincon J., Velastin S. (2012) Gaussian Mixture Background Modelling Optimisation for Micro-controllers. In: Bebis G. et al. (eds) Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7431. Springer, Berlin, Heidelberg

Abstract

This paper proposes an optimisation of the adaptive Gaussian mixture background model that allows the deployment of the method on processors with low memory capacity. The effect of the granularity of the Gaussian mean-value and variance in an integer-based implementation is investigated and novel updating rules of the mixture weights are described. Based on the proposed framework, an implementation for a very low power consumption micro-controller is presented. Results show that the proposed method operates in real time on the micro-controller and has similar performance to the original model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudio Salvadori
    • 1
  • Dimitrios Makris
    • 2
  • Matteo Petracca
    • 3
    • 1
  • Jesus Martinez-del-Rincon
    • 2
  • Sergio Velastin
    • 2
  1. 1.Real-Time Systems LaboratoryScuola Superiore Sant’AnnaPisaItaly
  2. 2.Digital Imaging Research CentreKingston UniversityLondonUnited Kingdom
  3. 3.National Laboratory of Photonic NetworksCNITPisaItaly

Personalised recommendations