Skip to main content

An Optimal Reconciliation Algorithm for Gene Trees with Polytomies

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Abstract

Reconciliation is a method widely used to infer the evolutionary relationship between the members of a gene family. It consists of comparing a gene tree with a species tree, and interpreting the incongruence between the two trees as evidence of duplication and loss. In the case of binary rooted trees, linear-time algorithms have been developed for the duplication, loss, and mutation (duplication + loss) costs. However, a strict prerequisite to reconciliation is to have a gene tree free from error, as few misplaced edges may lead to a completely different result in terms of the number and position of inferred duplications and losses. How should the weak edges be handled? One reasonable answer is to transform the binary gene tree into a non-binary tree by removing each weak edge and collapsing its two incident vertices into one. The created polytomies are “apparent” as they do not reflect a true simultaneous divergence of many copies from a common ancestor, but rather a lack of resolution. In this paper, we consider the problem of reconciling a non-binary rooted gene tree G with a binary rooted species tree S, were polytomies of G are assumed to be apparent. We give a linear-time algorithm that infers a reconciliation of minimum mutation cost between a binary refinement of a polytomy and S, improving on the best known result, which is cubic. This implies a straightforward generalization to a gene tree G with nodes of arbitrary degree, that runs in time O(|S||G|), which is shown to be an optimal algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proceedings of the National Academy of Sciences USA 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  2. Arvestad, L., Berglung, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Gusfield, D. (ed.) RECOMB 2004: Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology, pp. 326–335. ACM, New York (2004)

    Chapter  Google Scholar 

  3. Chang, W.-C., Eulenstein, O.: Reconciling Gene Trees with Apparent Polytomies. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chang, W.C., Eulenstein, O.: Reconciling gene trees with apparent polytomies, technical report. Department of Computer Science, Iowa State University (2006)

    Google Scholar 

  5. Chauve, C., El-Mabrouk, N.: New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Chen, K., Durand, D., Farach-Colton, M.: Notung: Dating gene duplications using gene family trees. Journal of Computational Biology 7, 429–447 (2000)

    Article  Google Scholar 

  7. Csűrös, M.: Ancestral reconstruction by asymmetric wagner parsimony over continuous characteand squared parsimony over distributions. In: Sixth RECOMB Satellite Workshop on Comparative Genomics, pp. 72–86 (2008)

    Google Scholar 

  8. Doroftei, A., El-Mabrouk, N.: Removing Noise from Gene Trees. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS (LNBI), vol. 6833, pp. 76–91. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Doyon, J.-P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Brief Bioinform. 12, 392–400 (2011)

    Article  Google Scholar 

  10. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Durand, D., Haldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology 13, 320–335 (2006)

    Article  MathSciNet  Google Scholar 

  12. Fang, G., Bhardwaj, N., Robilotto, R., Gerstein, M.B.: Getting started in gene orthology and functional analysis. PLoS Comput. Biol. 6(3), e1000703 (2010)

    Article  Google Scholar 

  13. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)

    Article  Google Scholar 

  14. Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical Computer Science 359, 378–399 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology 8(R141) (2007)

    Google Scholar 

  16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30, 729–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slowinski, J.B.: Molecular polytomies. Molecular Phylogenetics and Evolution 19(1), 114–120 (2001)

    Article  MathSciNet  Google Scholar 

  18. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 517–535 (2011)

    Article  Google Scholar 

  19. Zhang, J.: Evolution by gene duplication: an update. Trends in Ecology and Evolution 18(6), 292–298 (2003)

    Article  Google Scholar 

  20. Zhang, L.X.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4, 177–188 (1997)

    Article  Google Scholar 

  21. Zheng, Y., Wu, T., Zhang, L.: Reconciliation of gene and species trees with polytomies, eprint arXiv:1201.3995 (2012)

    Google Scholar 

  22. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciiation events on a gene tree. Bioinformatics 17, 821–828 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lafond, M., Swenson, K.M., El-Mabrouk, N. (2012). An Optimal Reconciliation Algorithm for Gene Trees with Polytomies. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics