Cancer Data Integration and Querying with GeneTegra

  • E. Patrick Shironoshita
  • Yves R. Jean-Mary
  • Ray M. Bradley
  • Patricia Buendia
  • Mansur R. Kabuka
Conference paper

DOI: 10.1007/978-3-642-31040-9_6

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7348)
Cite this paper as:
Shironoshita E.P., Jean-Mary Y.R., Bradley R.M., Buendia P., Kabuka M.R. (2012) Cancer Data Integration and Querying with GeneTegra. In: Bodenreider O., Rance B. (eds) Data Integration in the Life Sciences. DILS 2012. Lecture Notes in Computer Science, vol 7348. Springer, Berlin, Heidelberg

Abstract

We present the GeneTegra system, an ontology-based information integration environment. We show its ability to query multiple data sources, and we evaluate the relative performance of different data repositories. GeneTegra uses Semantic Web standards to resolve the semantic and syntactic diversity of the large and increasingly complex body of publicly available data. GeneTegra contains mechanisms to create ontology models of data sources using the OWL 2 Web Ontology Language, and to define, plan, and execute queries against these models using the SPARQL query language. Data source formats supported include relational databases and XML and RDF data sources. Experimental results have been obtained to show that GeneTegra obtains equivalent results from different data repositories containing the same data, illustrating the ability of the methods proposed in querying heterogeneous sources using the same modeling paradigm.

Keywords

Data integration ontology Semantic Web SPARQL OWL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. Patrick Shironoshita
    • 1
  • Yves R. Jean-Mary
    • 1
  • Ray M. Bradley
    • 1
  • Patricia Buendia
    • 1
  • Mansur R. Kabuka
    • 1
    • 2
  1. 1.INFOTECH Soft, Inc.MiamiUSA
  2. 2.University of MiamiCoral GablesUSA

Personalised recommendations