Quantitative Concept Analysis

  • Dusko Pavlovic
Conference paper

DOI: 10.1007/978-3-642-29892-9_24

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7278)
Cite this paper as:
Pavlovic D. (2012) Quantitative Concept Analysis. In: Domenach F., Ignatov D.I., Poelmans J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science, vol 7278. Springer, Berlin, Heidelberg

Abstract

Formal Concept Analysis (FCA) begins from a context, given as a binary relation between some objects and some attributes, and derives a lattice of concepts, where each concept is given as a set of objects and a set of attributes, such that the first set consists of all objects that satisfy all attributes in the second, and vice versa. Many applications, though, provide contexts with quantitative information, telling not just whether an object satisfies an attribute, but also quantifying this satisfaction. Contexts in this form arise as rating matrices in recommender systems, as occurrence matrices in text analysis, as pixel intensity matrices in digital image processing, etc. Such applications have attracted a lot of attention, and several numeric extensions of FCA have been proposed. We propose the framework of proximity sets (proxets), which subsume partially ordered sets (posets) as well as metric spaces. One feature of this approach is that it extracts from quantified contexts quantified concepts, and thus allows full use of the available information. Another feature is that the categorical approach allows analyzing any universal properties that the classical FCA and the new versions may have, and thus provides structural guidance for aligning and combining the approaches.

Keywords

concept analysis enriched category semantic completion universal property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dusko Pavlovic
    • 1
    • 2
  1. 1.Royal Holloway, University of LondonUK
  2. 2.University of TwenteThe Netherlands

Personalised recommendations