Tightly-Secure Signatures from Lossy Identification Schemes

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this paper we present three digital signature schemes with tight security reductions. Our first signature scheme is a particularly efficient version of the short exponent discrete log based scheme of Girault et al. (J. of Cryptology 2006). Our scheme has a tight reduction to the decisional Short Discrete Logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the original scheme of Girault et al. is based. The second signature scheme we construct is a modification of the scheme of Lyubashevsky (Asiacrypt 2009) that is based on the worst-case hardness of the shortest vector problem in ideal lattices. And the third scheme is a very simple signature scheme that is based directly on the hardness of the Subset Sum problem. We also present a general transformation that converts, what we term \(\emph{lossy}\) identification schemes, into signature schemes with tight security reductions. We believe that this greatly simplifies the task of constructing and proving the security of such signature schemes.