Annual International Conference on the Theory and Applications of Cryptographic Techniques

EUROCRYPT 2012: Advances in Cryptology – EUROCRYPT 2012 pp 520-536

Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set Decoding

  • Anja Becker
  • Antoine Joux
  • Alexander May
  • Alexander Meurer
Conference paper

DOI: 10.1007/978-3-642-29011-4_31

Volume 7237 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Becker A., Joux A., May A., Meurer A. (2012) Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set Decoding. In: Pointcheval D., Johansson T. (eds) Advances in Cryptology – EUROCRYPT 2012. EUROCRYPT 2012. Lecture Notes in Computer Science, vol 7237. Springer, Berlin, Heidelberg

Abstract

Decoding random linear codes is a well studied problem with many applications in complexity theory and cryptography. The security of almost all coding and LPN/LWE-based schemes relies on the assumption that it is hard to decode random linear codes. Recently, there has been progress in improving the running time of the best decoding algorithms for binary random codes. The ball collision technique of Bernstein, Lange and Peters lowered the complexity of Stern’s information set decoding algorithm to 20.0556n. Using representations this bound was improved to 20.0537n by May, Meurer and Thomae. We show how to further increase the number of representations and propose a new information set decoding algorithm with running time 20.0494n.

Keywords

Information Set DecodingRepresentation Technique
Download to read the full conference paper text

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Anja Becker
    • 1
  • Antoine Joux
    • 1
    • 2
  • Alexander May
    • 3
  • Alexander Meurer
    • 3
  1. 1.Laboratoire PRISMUniversité de Versailles Saint-QuentinFrance
  2. 2.DGAFrance
  3. 3.Horst Görtz Institute for IT-SecurityRuhr-University BochumGermany