Skip to main content

Towards Computational Models of Artificial Cognitive Systems That Can, in Principle, Pass the Turing Test

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

We will give plausible arguments in favor of a claim that we already have sufficient knowledge to understand the working of interesting artificial minds attaining a high-level cognition, consciousness included. Achieving a higher-level AI seems to be not a matter of a fundamental scientific breakthrough but rather a matter of exploiting our best theories of artificial minds and our most advanced data processing technologies. We list the theories we have in mind and illustrate their role and place on the example of a high-level architecture of a conscious cognitive agent with a potential to pass the Turing test.

This research was carried out within the institutional research plan AV0Z10300504 and partially supported by GA ČR grant No. P202/10/1333.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksander, I., Dummall, B.: Axioms and Tests for the Presence of Minimal Consciousness in Agents. Journal of Consciousness Studies 10(4-5) (2003)

    Google Scholar 

  2. Anderson, M., Bothell, M., Byrne, D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  3. The Arena of Accountable Predictions: A Long Bet. By 2029 no computer – or machine intelligence – will have passed the Turing Test (2009), http://longbets.org/1/#adjudication_terms

  4. Arbib, M.A.: The mirror system hypothesis: how did protolanguage evolve? In: Tallerman, M. (ed.) Language Origins: Perspectives on Evolution. Oxford University Press (2005)

    Google Scholar 

  5. Baars, B.J.: A cognitive theory of consciousness. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  6. Baars, B.J.: In the theater of consciousness: The workspace of the mind. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  7. Block, N.: On a Confusion About a Function of Consciousness. Brain and Behavioral Sciences 18, 227–247 (1995)

    Article  Google Scholar 

  8. Blum, M., Williams, R., Juba, B., Humphrey, M.: Toward a high-level definition of consciousness. In: Invited Talk Presented at the Annual IEEE Computational Complexity Conference, San Jose, CA (2005)

    Google Scholar 

  9. Chalmers, D.: Facing Up To the Problem of Consciousness. J. of Consciousness Studies 2(3), 200–219 (1995)

    Google Scholar 

  10. Cruse, H.: The evolution of cognition–a hypothesis. Cognitive Science 27(1) (2003)

    Google Scholar 

  11. Dennett, D.: Consciousness Explained. The Penguin Press (1991)

    Google Scholar 

  12. Feldman, J.: From Molecule to Metaphor. MIT Press, Cambridge (2006)

    Google Scholar 

  13. Ferrucci, D., et al.: Building Watson: An Overview DeepQA Project. AI Magazine, 200–214 (Fall 2010)

    Google Scholar 

  14. Franklin, S.: IDA: A conscious artifact? Journal of Consciousness Studies 10(4-5), 47–66 (2003)

    Google Scholar 

  15. Harnad, S.: The symbol grounding problem. Physica D (42), 335–346 (1990)

    Google Scholar 

  16. Harnad, S.: Other bodies, other minds: a machine incarnation of an old philosophical problem. Minds and Machines (1), 43–54 (1991)

    Google Scholar 

  17. Harvey, I.: Evolving Robot Consciousness: The Easy Problems and the Rest. In: Fetzer, J.H. (ed.) Evolving Consciousness. Advances in Consciousness Research Series, pp. 205–219. John Benjamins, Amsterdam (2002)

    Chapter  Google Scholar 

  18. Holland, O. (ed.): Journal of Consciousness Studies. Special Issue: Machine Consciousenss, vol. 10(4-5) (2003)

    Google Scholar 

  19. Holland, O., Goodman, R.: Robots with internal models: a route to machine consciousness? Journal of Consciousness Studies 10(4-5) (2003)

    Google Scholar 

  20. Hurford, J.R.: Language beyond our grasp: what mirror neurons can, and cannot, do for language evolution. In: Kimbrough, O., Griebel, U., Plunkett, K. (eds.) The Evolution of Communication systems: A Comparative Approach. The Viennna Series in Theoretical Biology. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Hume, D.: Enquiry concerning human understanding. In: Selby-Bigge, L.A. (ed.) Enquiries Concerning Human Understanding and Concerning the Principles of Morals, 3rd edn. Clarendon Press, Oxford (2003); revised by Nidditch, P.H.

    Google Scholar 

  22. Kurzweil, R.: The Singularity is Near, p. 652. Viking Books (2005)

    Google Scholar 

  23. Langley, P.: An adaptive architecture for physical agents. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 18–25. IEEE Computer Society Press, Compiegne (2005)

    Chapter  Google Scholar 

  24. Llinàs, R.: I of the Vortex: From Neurons to Self. MIT Press (2001)

    Google Scholar 

  25. Minsky, M.: Consciousness is a big suitcase. EDGE (1998), http://www.edge.org/3rd_culture/minsky/minsky_p2.html

  26. Nuxoll, A.M., Laird, J.E.: Extending Cognitive Architecture with Episodic Memory. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence. AAAI Press, Vancouver (2007)

    Google Scholar 

  27. O’Regan, J.K.: How to Build Consciousness into a Robot: The Sensorimotor Approach. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 332–346. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cogn. Processes 8, 115–131 (2007)

    Article  Google Scholar 

  29. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)

    Google Scholar 

  30. Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence. The MIT Press (2006)

    Google Scholar 

  31. Ramachandran, V.S.: Mirror neurons and imitation as the driving force behind ‘the great leap forward’ in human evolution. EDGE: The Third Culture (2000), http://www.edge.org/3rd_culture/ramachandran/ramachandran_p1.html

  32. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, I.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  33. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  34. Searle, J.R.: Minds, brains, and programs. Behavioral and Brain Sciences 3(3), 169–225 (1980)

    Google Scholar 

  35. Searle, J.S.: Opinion: Watson Doesn’t Know It Won on ’Jeopardy!’. The Wall Street Journal (2011), http://WSJ.com

  36. Schmitt, G.: Conversation from January/February 2011, between myself and Noam Chomsky (2011), http://www.framingbusiness.net/archives/1287

  37. Shanahan, M.P.: Consciousness, emotion, and imagination: a brain-inspired architecture for cognitive robotics. In: Proceedings AISB 2005 Symposium on Next Generation Approaches to Machine Consciousness, pp. 26–35 (2005)

    Google Scholar 

  38. Sloman, A.: Why symbol-grounding is both impossible and unnecessary, and why theory-tethering is more powerful anyway (2007), http://www.cs.bham.ac.uk/research/projects/cogaff/talks/models.pdf

  39. Smee, A.: Principles of the human mind deduced from physical laws, N.Y (1849) (1853)

    Google Scholar 

  40. Steels, L., Loetzsch, M., Spranger, M.S.: Semiotic dynamics solves the symbol grounding problem. Nature Precedings (2007), http://hdl.nature.com/10101/npre.2007.1234.1

  41. Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  42. Turing, A., et al.: Can Automatic Calculating Machines Be Said to Think? In: Shieber, S. (ed.) From a 1952 BBC Broadcast, Reprinted in The Turing Test: Verbal Behavior and the Hallmark of Intelligence. The MIT Press, Cambridge (1952)

    Google Scholar 

  43. Valiant, L.G.: Circuits of the mind. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  44. Wiedermann, J.: Towards Algorithmic Explanation of Mind Evolution and Functioning. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 152–166. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  45. Wiedermann, J.: Mirror neurons, embodied cognitive agents and imitation learning. Computing and Informatics 22(6), 545–559 (2003)

    MATH  Google Scholar 

  46. Wiedermann, J.: HUGO: A Cognitive Architecture with an Incorporated World Model. In: Proc. of the European Conference on Complex Systems ECCS 2006. Said Business School, Oxford University (2006)

    Google Scholar 

  47. Wiedermann, J.: A high level model of a conscious embodied agent. In: Proc. of the 8th IEEE International Conference on Cognitive Informatics, pp. 448–456 (2009); expanded version appeared in International Journal of Software Science and Computational Intelligence (IJSSCI) 2(3), 62–78 (2010)

    Google Scholar 

  48. Zimmer, C.: The Brain: Memories Are Crucial for Looking Into the Future. DISCOVER Magazine (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiedermann, J. (2012). Towards Computational Models of Artificial Cognitive Systems That Can, in Principle, Pass the Turing Test. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics