Discourse Segmentation for Sentence Compression

  • Alejandro Molina
  • Juan-Manuel Torres-Moreno
  • Eric SanJuan
  • Iria da Cunha
  • Gerardo Sierra
  • Patricia Velázquez-Morales
Conference paper

DOI: 10.1007/978-3-642-25324-9_27

Volume 7094 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Molina A., Torres-Moreno JM., SanJuan E., da Cunha I., Sierra G., Velázquez-Morales P. (2011) Discourse Segmentation for Sentence Compression. In: Batyrshin I., Sidorov G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science, vol 7094. Springer, Berlin, Heidelberg

Abstract

Earlier studies have raised the possibility of summarizing at the level of the sentence. This simplification should help in adapting textual content in a limited space. Therefore, sentence compression is an important resource for automatic summarization systems. However, there are few studies that consider sentence-level discourse segmentation for compression task; to our knowledge, none in Spanish. In this paper, we study the relationship between discourse segmentation and compression for sentences in Spanish. We use a discourse segmenter and observe to what extent the passages deleted by annotators fit in discourse structures detected by the system. The main idea is to verify whether the automatic discourse segmentation can serve as a basis in the identification of segments to be eliminated in the sentence compression task. We show that discourse segmentation could be a first solid step towards a sentence compression system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Molina
    • 1
  • Juan-Manuel Torres-Moreno
    • 1
  • Eric SanJuan
    • 1
  • Iria da Cunha
    • 2
  • Gerardo Sierra
    • 3
  • Patricia Velázquez-Morales
    • 4
  1. 1.LIA-Université d’AvignonFrance
  2. 2.IULA-Universitat Pompeu FabraSpain
  3. 3.GIL-Instituto de Ingeniería UNAMMexico
  4. 4.VM LabsUK