An Ontological and Terminological Resource for n-ary Relation Annotation in Web Data Tables

  • Rim Touhami
  • Patrice Buche
  • Juliette Dibie-Barthélemy
  • Liliana Ibănescu
Conference paper

DOI: 10.1007/978-3-642-25106-1_19

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7045)
Cite this paper as:
Touhami R., Buche P., Dibie-Barthélemy J., Ibănescu L. (2011) An Ontological and Terminological Resource for n-ary Relation Annotation in Web Data Tables. In: Meersman R. et al. (eds) On the Move to Meaningful Internet Systems: OTM 2011. OTM 2011. Lecture Notes in Computer Science, vol 7045. Springer, Berlin, Heidelberg

Abstract

We propose, in this paper, a model for an Ontological and Terminological Resource (OTR) dedicated to the task of n-ary relations annotation in Web data tables. This task relies on the identification of the symbolic concepts and the quantities, defined in the OTR, which are represented in the tables’ columns. We propose to guide the annotation by an OTR because it allows a separation between the terminological and conceptual components and allows dealing with abbreviations and synonyms which could denote the same concept in a multilingual context. The OTR is composed of a generic part to represent the structure of the ontology dedicated to the task of n-ary relations annotation in data tables for any application and of a specific part to represent a particular domain of interest. We present the model of our OTR and its use in an existing method for semantic annotation and querying of Web tables.

Keywords

Semantic integration semantic data model ontology engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rim Touhami
    • 1
    • 3
  • Patrice Buche
    • 1
    • 2
  • Juliette Dibie-Barthélemy
    • 3
  • Liliana Ibănescu
    • 3
  1. 1.INRA - UMR IATEMontpellierFrance
  2. 2.LIRMMMontpellierFrance
  3. 3.INRA - Mét@risk & AgroParisTechParisFrance

Personalised recommendations