Monotone Instance Ranking with mira

  • Nicola Barile
  • Ad Feelders
Conference paper

DOI: 10.1007/978-3-642-24477-3_6

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6926)
Cite this paper as:
Barile N., Feelders A. (2011) Monotone Instance Ranking with mira. In: Elomaa T., Hollmén J., Mannila H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science, vol 6926. Springer, Berlin, Heidelberg

Abstract

In many ranking problems, common sense dictates that the rank assigned to an instance should be increasing (or decreasing) in one or more of the attributes describing it. Consider, for example, the problem of ranking documents with respect to their relevance to a particular query. Typical attributes are counts of query terms in the abstract or title of the document, so it is natural to postulate the existence of an increasing relationship between these counts and document relevance. Such relations between attributes and rank are called monotone. In this paper we present a new algorithm for instance ranking called mira which learns a monotone ranking function from a set of labelled training examples. Monotonicity is enforced by applying the isotonic regression to the training sample, together with an interpolation scheme to rank new data points. This is combined with logistic regression in an attempt to remove unwanted rank equalities. Through experiments we show that mira produces ranking functions having predictive performance comparable to that of a state-of-the-art instance ranking algorithm. This makes mira a valuable alternative when monotonicity is desired or mandatory.

Download to read the full conference paper text

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nicola Barile
    • 1
  • Ad Feelders
    • 1
  1. 1.Department of Information and Computing SciencesUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations