Skip to main content

Simulation of Pre-planetesimal Collisions with Smoothed Particle Hydrodynamics

  • Conference paper
Book cover High Performance Computing in Science and Engineering '11

Abstract

In the frame of planet formation by coagulation the growth step from millimetre-sized highly porous dust aggregates to massive kilometre-sized planetesimals is not well constrained. In this regime of pre-planetesimals, collisional growth is endangered by disruptive collisions or mutual rebound and compaction. Both obstacles are addressed in our work. Since laboratory studies of pre-planetesimal collisions are infeasible beyond centimetre-size, we developed a numerical smoothed particle hydrodynamics (SPH) porosity model, which was implemented into the parallel SPH code parasph and calibrated with laboratory benchmark experiments. We summarise the porosity model and a new classification scheme for pre-planetesimal outcome: four-population model. Utilising these tools in parameter studies of two-body collisions, we find that aggregate porosity, size ratio of the collision partners, and compacted shells around the aggregates significantly influence the collision outcome and fragmentation velocity thresholds. We also develop an inhomogeneity damage model and demonstrate that inhomogeneous aggregates, generated e.g. by subsequent collisions, are weaker and more prone to catastrophic disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benz, W., Asphaug, E.: Impact simulations with fracture. I. Method and tests. Icarus 107(1), 98–116 (1994).

    Article  Google Scholar 

  2. Benz, W., Asphaug, E.: Simulations of brittle solids using smooth particle hydrodynamics. Computer Physics Communications 87(1–2), 253–265 (1995).

    Article  MATH  Google Scholar 

  3. Blum, J., Münch, M.: Experimental investigations on aggregate-aggregate collisions in the early solar nebula. Icarus 106(1), 151–167 (1993).

    Article  Google Scholar 

  4. Blum, J., Schräpler, R.: Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys. Rev. Lett. 93(11), 115503 (2004).

    Article  Google Scholar 

  5. Blum, J., Wurm, G.: The growth mechanisms of macroscopic bodies in protoplanetary disks. Annual Review of Astronomy and Astrophysics 46(1), 21–56 (2008).

    Article  Google Scholar 

  6. Brauer, F., Dullemond, C.P., Henning, T.: Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astronomy and Astrophysics 480(3), 859–877 (2008).

    Article  MATH  Google Scholar 

  7. Bubeck, T., Hipp, M., Huettemann, S., Kunze, S., Ritt, M., Rosenstiel, W., Ruder, H., Speith, R.: SPH test simulations on a portable parallel environment. In: Proceedings of the Workshop on Physics and Computer Science, pp. 139–155. Spring meeting of the DPG (1999).

    Google Scholar 

  8. Bubeck, T., Hipp, M., Hüttemann, S., Kunze, S., Ritt, M., Rosenstiel, W., Ruder, H., Speith, R.: Parallel SPH on Cray T3E and NEC SX-4 using DTS. In: E. Krause, W. Jäger (eds.) High Performance Computing in Science and Engineering ’98, pp. 396–410. Springer-Verlag (1998).

    Google Scholar 

  9. Dominik, C., Blum, J., Cuzzi, J.N., Wurm, G.: Growth of dust as the initial step toward planet formation. In: B. Reipurth, D. Jewitt, K. Keil (eds.) Protostars and Planets V, pp. 783–800. University of Arizona Press, Tucson (2007).

    Google Scholar 

  10. Dullemond, C.P., Dominik, C.: Dust coagulation in protoplanetary disks: A rapid depletion of small grains. Astronomy and Astrophysics 434(3), 971–986 (2005).

    Article  MATH  Google Scholar 

  11. Geretshauser, R.J.: Simulation of Pre-planetesimal Collisions with Smoothed Particle Hydrodynamics. Ph.D. thesis, Universität Tübingen, Tübingen (2011).

    Google Scholar 

  12. Geretshauser, R.J., Meru, F., Speith, R., Kley, W.: The four-populations model: A new classification scheme for pre-planetesimal collisions. Astronomy and Astrophysics 531, A166 (2011).

    Article  Google Scholar 

  13. Geretshauser, R.J., Speith, R., Güttler, C., Krause, M., Blum, J.: Numerical simulations of highly porous dust aggregates in the low-velocity collision regime: Implementation and calibration of a smooth particle hydrodynamics code. Astronomy and Astrophysics 513, A58 (2010).

    Article  Google Scholar 

  14. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics – Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181, 375–389 (1977).

    MATH  Google Scholar 

  15. Goldreich, P., Lithwick, Y., Sari, R.: Final stages of planet formation. The Astrophysical Journal 614(1), 497 (2004).

    Article  Google Scholar 

  16. Grady, D.E., Kipp, M.E.: Continuum modelling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 17(3), 147–157 (1980).

    Article  Google Scholar 

  17. Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P.: The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astronomy and Astrophysics 513, A56 (2010).

    Article  Google Scholar 

  18. Güttler, C., Krause, M., Geretshauser, R.J., Speith, R., Blum, J.: The physics of protoplanetesimal dust agglomerates. IV. Toward a dynamical collision model. The Astrophysical Journal 701, 130–141 (2009).

    Article  Google Scholar 

  19. Heißelmann, D., Fraser, H.J., Blum, J.: Experimental studies on the aggregation properties of ice and dust in planet-forming regions. International Astronautical Congress Abstracts 58, 1–6 (2007).

    Google Scholar 

  20. Hipp, M., Rosenstiel, W.: Parallel hybrid particle simulations using MPI and OpenMP. In: M. Danelutto, M. Vanneschi, D. Laforenza (eds.) Euro-Par, Lecture Notes in Computer Science, vol. 3149, pp. 189–197. Springer (2004).

    Google Scholar 

  21. Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. In: H. Trease, M.J. Fritts, W.P. Crowley (eds.) Advances in the Free-Lagrange Method: Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, Lecture Notes in Physics, vol. 395. Springer (1991).

    Chapter  Google Scholar 

  22. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. The Astronomical Journal 82, 1013–1024 (1977).

    Article  Google Scholar 

  23. McKee, C.F., Ostriker, E.C.: Theory of star formation. Annual Review of Astronomy and Astrophysics 45(1), 565–687 (2007).

    Article  Google Scholar 

  24. Monaghan, J.J.: Smoothed particle hydrodynamics. Reports on Progress in Physics 68(8), 1703 (2005).

    Article  MathSciNet  Google Scholar 

  25. Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astronomy and Astrophysics 149(1), 135–143 (1985).

    MATH  Google Scholar 

  26. Natta, A., Testi, L., Calvet, N., Henning, T., Waters, R., Wilner, D.J.: Dust in proto-planetary disks: Properties and evolution. In: B. Reipurth, D. Jewitt, K. Keil (eds.) Protostars and Planets V, pp. 767–781. University of Arizona Press, Tucson (2007).

    Google Scholar 

  27. Ormel, C.W., Spaans, M., Tielens, A.G.G.M.: Dust coagulation in protoplanetary disks: Porosity matters. Astronomy and Astrophysics 461(1), 215–232 (2007).

    Article  Google Scholar 

  28. Paszun, D., Dominik, C.: Collisional evolution of dust aggregates. From compaction to catastrophic destruction. Astronomy and Astrophysics 507(2), 1023–1040 (2009).

    Article  Google Scholar 

  29. Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering 139(1–4), 375–408 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  30. Rosswog, S.: Astrophysical smooth particle hydrodynamics. New Astronomy Reviews 53(4–6), 78–104 (2009).

    Article  Google Scholar 

  31. Schäfer, C.: Application of Smooth Particle Hydrodynamics to Selected Aspects of Planet Formation. Ph.D. thesis, Universität Tübingen, Tübingen (2005).

    Google Scholar 

  32. Schäfer, C., Speith, R., Kley, W.: Collisions between equal-sized ice grain agglomerates. Astronomy and Astrophysics 470(2), 733–739 (2007).

    Article  Google Scholar 

  33. Sirono, S.: Conditions for collisional growth of a grain aggregate. Icarus 167(2), 431–452 (2004).

    Article  Google Scholar 

  34. Teiser, J., Wurm, G.: Decimetre dust aggregates in protoplanetary discs. Astronomy and Astrophysics 505(1), 351–359 (2009).

    Article  Google Scholar 

  35. Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: Collisional growth conditions for dust aggregates. The Astrophysical Journal 702(2), 1490 (2009).

    Article  Google Scholar 

  36. Weibull, W.: A Statistical Theory of the Strength of Materials, Ingeniörsvetenskapsakademiens handlingar, vol. 151. Generalstabens Litografiska Anstalts Förlag, Stockholm (1939).

    Google Scholar 

  37. Weidenschilling, J.S.: The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science 51(1), 153–158 (1977).

    Article  Google Scholar 

  38. Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society 180(1), 57–70 (1977).

    Google Scholar 

  39. Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P.: The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astronomy and Astrophysics 513, A57 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Geretshauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geretshauser, R.J., Speith, R., Kley, W. (2012). Simulation of Pre-planetesimal Collisions with Smoothed Particle Hydrodynamics. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_3

Download citation

Publish with us

Policies and ethics