Skip to main content

Properties of States of Super-α-Stable Motion with Branching of Index 1 + β

  • Conference paper
  • First Online:
  • 931 Accesses

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 11))

Abstract

It has been well known for a long time that the measure states of the process in the title are absolutely continuous at any fixed time provided that the dimension of space is small enough. However, besides the very special case of one-dimensional continuous super-Brownian motion, properties of the related density functions were not well understood. Only in 2003, Mytnik and Perkins 21 revealed that in the Brownian motion case and if the branching is discontinuous, there is a dichotomy for the densities: Either there are continuous versions of them or they are locally unbounded. We recently showed that the same type of fixed time dichotomy holds also in the case of discontinuous motion. Moreover, the continuous versions are locally Hölder continuous, and we determined the optimal index for them. Finally, we determine the optimal index of Hölder continuity at given space points which is strictly larger than the optimal index of local Hölder continuity.

AMS 2010 Subject Classification. Primary 60J80; Secondary 60G57.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dawson, D.A.: Infinitely divisible random measures and superprocesses. In: Stochastic analysis and related topics (Silivri, 1990), volume 31 of Progr. Probab., pp. 1–129. Birkhäuser Boston, Boston, MA (1992)

    Google Scholar 

  2. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk. Acta Math. 186, 239–270 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Durand, A.: Singularity sets of Lévy processes. Probab. Theor. Relat. Fields. 143(3–4), 517–544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fleischmann, K.: Critical behavior of some measure-valued processes. Math. Nachr. 135, 131–147 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fleischmann, K., Mytnik, L., Wachtel, V.: Optimal local Hölder index for density states of superprocesses with (1 + β)-branching mechanism. Ann. Probab. 38(3), 1180–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fleischmann, K., Mytnik, L., Wachtel, V.: Hölder index at a given point for density states of super-α-stable motion of index 1 + β. J. Theor. Probab. 24(1), 66–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fleischmann, K., Sturm, A.: A super-stable motion with infinite mean branching. Ann. Inst. Henri Poincaré Probab. Stat. 40(5), 513–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fleischmann, K., Wachtel, V.: Large scale localization of a spatial version of Neveu’s branching process. Stoch. Proc. Appl. 116(7), 983–1011 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, X., Taylor, S.J.: Multifractal structure of a general subordinator. Stoch. Process. Appl. 88, 245–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iscoe, I.: A weighted occupation time for a class of measure-valued critical branching Brownian motions. Probab. Theor. Relat. Fields. 71, 85–116 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iscoe, I.: Ergodic theory and a local occupation time for measure-valued critical branching Brownian motion. Stochastics 18, 197–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaffard, S.: The multifractal nature of Lévy processes. Probab. Theor. Relat. Fields. 114, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaffard, S.: On Lacunary wavelet series. Ann. Appl. Probab. 10(1), 313–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jaffard, S.: Wavelet techniques in multifractal analysis. Proc. Symp. Pure Math. 72(2), 91–151 (2004)

    Article  MathSciNet  Google Scholar 

  15. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Memb. Am. Math. Soc. 123, 587 (1996)

    MathSciNet  Google Scholar 

  16. Klenke, A., Mörters, P.: The multifractal spectrum of Brownian intersection local time. Ann. Probab. 33, 1255–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Konno, N., Shiga,T.: Stochastic partial differential equations for some measure-valued diffusions. Probab. Theor. Relat. Fields. 79, 201–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Gall, J.-F., Perkins, E.A.: The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23(4), 1719–1747 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19.  Mörters, P., Shieh, N.R.: On the multifractal spectrum of the branching measure on a Galton-Watson tree. J. Appl. Probab. 41, 1223–1229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theor. Relat. Fields. 123, 157–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mytnik, L., Perkins, E.: Regularity and irregularity of (1 + β)-stable super-Brownian motion. Ann. Probab. 31(3), 1413–1440 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Perkins, E.A., Taylor, S.J.: The multifractal structure of super-Brownian motion. Ann. Inst. H. Poincaré Probab. Stat. 34(1), 97–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reimers, M.: One-dimensional stochastic partial differential equations and the branching measure diffusion. Probab. Theor. Relat. Fields. 81, 319–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walsh, J.B.: An introduction to stochastic partial differential equations. volume 1180 of Lecture Notes Math., pp. 265–439. École d’Été de Probabilités de Saint-Flour XIV–1984, Springer, Berlin, (1986)

    Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for a careful reading of our manuscript. This work was supported by the German Israeli Foundation for Scientific Research and Development, Grant No. G-807-227.6/2003. Moreover, Mytnik was partially supported by ISF grant and Wachtel by GIF Young Scientists Program Grant No. G-2241-2114.6/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fleischmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischmann, K., Mytnik, L., Wachtel, V. (2012). Properties of States of Super-α-Stable Motion with Branching of Index 1 + β. In: Deuschel, JD., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds) Probability in Complex Physical Systems. Springer Proceedings in Mathematics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23811-6_16

Download citation

Publish with us

Policies and ethics