Proving Symmetries by Model Transformation

Download Book (12,859 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests.
Download Chapter (226 KB)

Abstract

The presence of symmetries in a constraint satisfaction problem gives an opportunity for more efficient search. Within the class of matrix models, we show that the problem of deciding whether some well known permutations are model symmetries (solution symmetries on every instance) is undecidable. We then provide a new approach to proving the model symmetries by way of model transformations. Given a model M and a candidate symmetry σ, the approach first syntactically applies σ to M and then shows that the resulting model σ(M) is semantically equivalent to M. We demonstrate this approach with an implementation that reduces equivalence to a sentence in Presburger arithmetic, using the modelling language MiniZinc and the term re-writing language Cadmium, and show that it is capable of proving common symmetries in models.