Automatic View Planning for Cardiac MRI Acquisition

  • Xiaoguang Lu
  • Marie-Pierre Jolly
  • Bogdan Georgescu
  • Carmel Hayes
  • Peter Speier
  • Michaela Schmidt
  • Xiaoming Bi
  • Randall Kroeker
  • Dorin Comaniciu
  • Peter Kellman
  • Edgar Mueller
  • Jens Guehring
Conference paper

DOI: 10.1007/978-3-642-23626-6_59

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)
Cite this paper as:
Lu X. et al. (2011) Automatic View Planning for Cardiac MRI Acquisition. In: Fichtinger G., Martel A., Peters T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6893. Springer, Berlin, Heidelberg

Abstract

Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoguang Lu
    • 1
  • Marie-Pierre Jolly
    • 1
  • Bogdan Georgescu
    • 1
  • Carmel Hayes
    • 2
  • Peter Speier
    • 2
  • Michaela Schmidt
    • 2
  • Xiaoming Bi
    • 3
  • Randall Kroeker
    • 4
  • Dorin Comaniciu
    • 1
  • Peter Kellman
    • 5
  • Edgar Mueller
    • 2
  • Jens Guehring
    • 2
  1. 1.Image Analytics and InformaticsSiemens Corporate ResearchPrincetonUSA
  2. 2.Healthcare Sector, H IM MR PLM-AW CARDSiemens AGErlanganGermany
  3. 3.Siemens Medical Solutions USAChicagoUSA
  4. 4.Siemens Medical Solutions CanadaWinnipegCanada
  5. 5.National Institutes of HealthBethesdaUSA

Personalised recommendations