Chapter

Analysis of Social Media and Ubiquitous Data

Volume 6904 of the series Lecture Notes in Computer Science pp 119-141

Bayesian Networks to Predict Data Mining Algorithm Behavior in Ubiquitous Computing Environments

  • Aysegul CayciAffiliated withSabanci UniversityFacultad de Informatica, Universidad Politecnica
  • , Santiago EibeAffiliated withSabanci UniversityFacultad de Informatica, Universidad Politecnica
  • , Ernestina MenasalvasAffiliated withSabanci UniversityFacultad de Informatica, Universidad Politecnica
  • , Yucel SayginAffiliated withSabanci UniversityFacultad de Informatica, Universidad Politecnica

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The growing demand of data mining services for ubiquitous computing environments necessitates deployment of appropriate mechanisms that make use of circumstantial factors to adapt the data mining behavior. Despite the efforts and results so far for efficient parameter tuning, incorporating dynamically changing context information on the parameter setting decision is lacking in the present work. Thus, Bayesian networks are used to learn, in possible situations the effects of data mining algorithm parameters on the final model obtained. Based on this knowledge, we propose to infer future algorithm configurations appropriate for situations. Instantiation of the approach for association rules is also shown in the paper and the feasibility of the approach is validated by the experimentation.

Keywords

automatic data mining data mining configuration ubiquitous data mining