Graphene Nanoelectronics

Part of the series NanoScience and Technology pp 435-464


Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications

  • Derek A. StewartAffiliated withCornell Nanoscale Facility, Cornell University Email author 
  • , K. Andre MkhoyanAffiliated withDepartment of Chemical Engineering and Materials Science, University of Minnesota Email author 

* Final gross prices may vary according to local VAT.

Get Access


While graphite oxide was first identified in 1855 [1, 2], the recent discovery of stable graphene sheets has led to renewed interest in the chemical structure and potential applications of graphene oxide sheets. These structures have several physical properties that could aid in the large scale development of a graphene electronics industry. Depending on the degree of oxidization, graphene oxide layers can be either semiconducting or insulating and provide an important complement to metallic graphene layers. In addition, the electronic and optical properties of these films can be controlled by the selective removal or addition of oxygen. For example, selective oxidationof graphene sheets could lead to electronic circuit fabrication on the scale of a single atomic layer. Graphene oxide is also dispersible in water and other solvents and this provides a facile route for graphene deposition on a wide range of substrates for macroelectronics applications. Although graphite oxide has been known for roughly 150 years, key questions remain in regards to its chemical structure, electronic properties, and fabrication. Answering these issues has taken on special urgency with the development of graphene electronics. In this chapter, we will provide an overview of the field with special focus on synthesis, characterization, and first principles analysis of bonding and electronic structures. Finally, we will also address some of the most promising applications for graphene oxide in electronics and other industries.