Skip to main content

Gravitational Force: Triggered Stress in Cells of the Immune System

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Sensitivity of the human immune system to microgravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. In vitro experiments demonstrated that cells of the immune system are exceptionally sensitive to microgravity. Therefore, serious concerns arose whether spaceflight-associated immune system weakening ultimately precludes the expansion of human presence beyond Earth’s orbit. In human cells, gravitational forces may be sensed by an individual cell in the context of altered extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal prestress in the cell–tissue matrix. The development of cellular mechanosensitivity and signal transduction was probably an evolutionary requirement to enable our cells to sense their individual microenvironment. Therefore it is possible that the same mechanisms, which enable human cells to sense and to cope with mechanical stress, are potentially dangerous in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4:25–34

    PubMed  CAS  Google Scholar 

  • Bakos A, Varkonyi A, Minarovits J, Batkai L (2001) Effect of simulated microgravity on human lymphocytes. J Gravit Physiol 8:69–70

    Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481

    PubMed  CAS  Google Scholar 

  • Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G, Meloni MA, Hughes-Fulford M (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19:2020–2022

    PubMed  CAS  Google Scholar 

  • Braeucker R, Cogoli A, Hemmersbach R (2002) Graviperception and graviresponse at the cellular level. In: Horneck G, Baumstark-Khan C (eds) Astrobiology the quest for the conditions of life. Springer, Berlin/Heidelberg/New York, pp 287–333

    Google Scholar 

  • Buravkova LB, Rykova MP, Grigorieva V, Antropova EN (2004) Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J Gravit Physiol 11:177–180

    Google Scholar 

  • Buravkova L, Romanov Y, Rykova M, Grigorieva O, Merzlikina N (2005) Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut 57:67–74

    PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    PubMed  CAS  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48

    PubMed  CAS  Google Scholar 

  • Cogoli A (1993) The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 54:259–268

    PubMed  CAS  Google Scholar 

  • Cogoli A (1996) Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies. J Gravit Physiol 3:1–9

    PubMed  CAS  Google Scholar 

  • Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79

    PubMed  CAS  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225:228–230

    PubMed  CAS  Google Scholar 

  • Cogoli M, Bechler B, Cogoli A, Arena N, Barni S, Pippia P, Sechi G, Valora N, Monti R (1992) Lymphocytes on sounding rockets. Adv Space Res 12:141–144

    PubMed  CAS  Google Scholar 

  • Cogoli-Greuter M, Meloni MA, Sciola L, Spano A, Pippia P, Monaco G, Cogoli A (1996) Movements and interactions of leukocytes in microgravity. J Biotechnol 47:279–287

    PubMed  CAS  Google Scholar 

  • Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL (2008) Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80:1116–1122

    PubMed  CAS  Google Scholar 

  • Cubano LA, Lewis ML (2000) Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). Exp Gerontol 35:389–400

    PubMed  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    PubMed  CAS  Google Scholar 

  • Feldner JC, Brandt BH (2002) Cancer cell motility–on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108

    PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76

    Google Scholar 

  • Fuller B (1961) Tensegrity. Portfolio Artnews Annu 4:112–127

    Google Scholar 

  • Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75

    PubMed  CAS  Google Scholar 

  • Galimberti M, Tolic-Norrelykke IM, Favillini R, Mercatelli R, Annunziato F, Cosmi L, Liotta F, Santarlasci V, Maggi E, Pavone FS (2006) Hypergravity speeds up the development of T-lymphocyte motility. Eur Biophys J 35:393–400

    PubMed  Google Scholar 

  • Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond earth’s orbit? J Leukoc Biol 86:1027–1038

    PubMed  Google Scholar 

  • Haeder D-P, Rosum A, Schaefer J, Hemmersbach R (1996) Graviperception in the flagellate Euglena gracilis during a shuttle spaceflight. J Biotechnol 47:261–269

    CAS  Google Scholar 

  • Haeder D-P, Porst M, Tahedl H, Richter P, Lebert M (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57

    Google Scholar 

  • Haeder D-P, Hemmersbach R, Lebert M (2005) Gravity and the behaviour of unicellular organisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13:2071–2082

    PubMed  CAS  Google Scholar 

  • Hatton JP, Gaubert F, Cazenave JP, Schmitt D (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87:39–50

    PubMed  CAS  Google Scholar 

  • Haut Donahue TL, Genetos DC, Jacobs CR, Donahue HJ, Yellowley CE (2004) Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 35:656–663

    PubMed  CAS  Google Scholar 

  • Hawkins W, Zieglschmid J (1975) Clinical aspects of crew health. In: Johnston R, Dietlein L, Berry C (eds) Biomedical results of Apollo. NASA, Washington, DC, pp 43–81

    Google Scholar 

  • Hemmersbach R, Braeucker R (2002) Gravity-related behaviour in ciliates and flagellates. In: Cogoli A (ed) Cell biology and biotechnology in space, advances in space biology and medicine 8. Elsevier, Amsterdam, pp 59–75

    Google Scholar 

  • Hemmersbach R, Haeder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75

    PubMed  CAS  Google Scholar 

  • Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Haeder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278

    PubMed  CAS  Google Scholar 

  • Hemmersbach R, Voormanns R, Bromeis B, Schmidt N, Rabien H, Ivanova K (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289

    PubMed  CAS  Google Scholar 

  • Hemmersbach R, Volkmann D, Haeder D-P (1999) Graviorientation in protists and plants. J Plant Physiol 154:1–15

    PubMed  CAS  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Haeder DP, Vogel K, Grothe D, Meyer I (1993) Orientation of Paramecium under the conditions of microgravity. J Eukaryot Microbiol 40:439–446

    PubMed  CAS  Google Scholar 

  • Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288

    PubMed  CAS  Google Scholar 

  • Hoffman BD, Massiera G, Crocker JC (2007) Fragility and mechanosensing in a thermalized cytoskeleton model with forced protein unfolding. Phys Rev E Stat Nonlin Soft Matter Phys 76:051906

    Google Scholar 

  • Hofman P, d’Andrea L, Guzman E, Selva E, Le Negrate G, Far DF, Lemichez E, Boquet P, Rossi B (1999) Neutrophil F-actin and myosin but not microtubules functionally regulate transepithelial migration induced by interleukin 8 across a cultured intestinal epithelial monolayer. Eur Cytokine Netw 10:227–236

    PubMed  CAS  Google Scholar 

  • Horwitz AR, Parsons JT (1999) Cell migration–movin’ on. Science 286:1102–1103

    PubMed  CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593

    PubMed  CAS  Google Scholar 

  • Hughes-Fulford M, Chang T, Li CF (2008) Effect of gravity on monocyte differentiation. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, France

    Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627

    PubMed  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. FASEB J 13:S3–S15

    PubMed  CAS  Google Scholar 

  • Ingber DE (2003a) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577

    PubMed  Google Scholar 

  • Ingber DE (2003b) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    PubMed  CAS  Google Scholar 

  • Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP (2006) Rigidity sensing at the leading edge through avb3 integrins and RPTPa. Biophys J 90:1804–1809

    PubMed  CAS  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450

    PubMed  CAS  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554

    PubMed  CAS  Google Scholar 

  • Kimzey SL (1977) Hematology and immunology studies. In: Johnson RS, Dietlein LF, eds. Biomedical results from Skylab, NASA SP-377. Scientific and Technical Information Office, National Aeronautics and Space Administration; Washington, DC, pp 249–282

    Google Scholar 

  • Klopp E, Graff D, Struckmeier J, Born M, Curtze S, Hofmann M, Jones D (2002) The osteoblast mechano-receptor, microgravity perception and thermodynamics. J Gravit Physiol 9:269–270

    Google Scholar 

  • Kole TP, Tseng Y, Huang L, Katz JL, Wirtz D (2004) Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol Biol Cell 15:3475–3484

    PubMed  CAS  Google Scholar 

  • Kondrachuk AV, Sirenko SP (1996) The theoretical consideration of microgravity effects on a cell. Adv Space Res 17:165–168

    PubMed  CAS  Google Scholar 

  • Konstantinova IV, Antropova YN, Legenkov VI, Zazhirey VD (1973) Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. Space Biol Med 7:48–55

    Google Scholar 

  • Kossmehl P, Shakibaei M, Cogoli A, Pickenhahn H, Paul M, Grimm D (2002) Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J Gravit Physiol 9:P295–P296

    PubMed  Google Scholar 

  • Langenbach KJ, Sottile J (1999) Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem 274:7032–7038

    PubMed  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    PubMed  CAS  Google Scholar 

  • Lebert M, Haeder D-P (1996) How Euglena tells up from down. Nature 379:590

    PubMed  CAS  Google Scholar 

  • Lebert M, Richter P, Haeder DP (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690

    CAS  Google Scholar 

  • Lee JS, Gotlieb AI (2002) Microtubule-actin interactions may regulate endothelial integrity and repair. Cardiovasc Pathol 11:135–140

    PubMed  CAS  Google Scholar 

  • LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415

    PubMed  CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    PubMed  CAS  Google Scholar 

  • Machemer H, Machemer-Roehnisch S, Braeucker R, Takahashi K (1991) Gravikinesis in paramecium: theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168:1–12

    Google Scholar 

  • Mammoto A, Huang S, Ingber DE (2007) Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J Cell Sci 120:456–467

    PubMed  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    PubMed  CAS  Google Scholar 

  • Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72:174–179

    PubMed  Google Scholar 

  • Meloni MA, Galleri G, Pippia P, Cogoli-Greuter M (2006) Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 229:243–249

    PubMed  CAS  Google Scholar 

  • Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M (2008) Effects of real microgravity aboard international space station on monocytes motility and interaction with T-lymphocytes. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, France

    Google Scholar 

  • Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193

    PubMed  CAS  Google Scholar 

  • Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci 1010:143–147

    PubMed  CAS  Google Scholar 

  • Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116:813–822

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Takahashi A, Wang X, Ohnishi K, Ohira Y, Nagaoka S (1999) Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. Mutat Res 430:271–274

    PubMed  CAS  Google Scholar 

  • Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814

    PubMed  CAS  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    PubMed  CAS  Google Scholar 

  • Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111

    PubMed  CAS  Google Scholar 

  • Paulsen K, Thiel C, Timm J, Schmidt PM, Huber K, Tauber S, Hemmersbach R, Seibt D, Kroll H, Grote KH, Zipp F, Schneider-Stock R, Cogoli A, Hilliger A, Engelmann F, Ullrich O (2010) Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67(9–10):1116–1125

    CAS  Google Scholar 

  • Pellis NR, Goodwin TJ, Risin D, McIntyre BW, Pizzini RP, Cooper D, Baker TL, Spaulding GF (1997) Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 33:398–405

    PubMed  CAS  Google Scholar 

  • Penard E (1917) Le genre Loxodes. Rev Suisse Zool 25:453–489

    Google Scholar 

  • Planel H (2004) Space and life: an introduction to space biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  • Planel H, Richoilley G, Tixador R, Templier J, Bes JC, Gasset G (1981) Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos 1 and Cytos M experiment. Adv Space Res 1:95–101

    Google Scholar 

  • Planel H, Tixador R, Nefedov Y, Gretchko G, Richoilley G (1982) Effect of space flight factors at the cellular level: results of the CYTOS experiment. Aviat Space Environ Med 53:370–374

    PubMed  CAS  Google Scholar 

  • Plett PA, Abonour R, Frankovitz SM, Orschell CM (2004) Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 32:773–781

    PubMed  CAS  Google Scholar 

  • Rieder N (1977) Die Müllerschen Körperchen von Loxodes magnus (Ciliata, Holotricha): Ihr Bau und ihre mögliche Funktion als Schwererezeptor. Verhandlungen der Deutschen Zoologischen Gesellschaft, 70. Jahresversammlung, Erlangen, Gustav Fisher Verlag, Stuttgart, pp 254

    Google Scholar 

  • Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561

    PubMed  CAS  Google Scholar 

  • Roesner H, Wassermann T, Moeller W, Hanke W (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229:225–234

    Google Scholar 

  • Romanov YA, Buravkova LB, Rikova MP, Antropova EN, Savchenko NN, Kabaeva NV (2001) Expression of cell adhesion molecules and lymphocyte-endothelium interaction under simulated hypogravity in vitro. J Gravit Physiol 8:5–8

    Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418

    PubMed  CAS  Google Scholar 

  • Schmitt DA, Hatton JP, Emond C, Chaput D, Paris H, Levade T, Cazenave JP, Schaffar L (1996) The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J 10:1627–1634

    PubMed  CAS  Google Scholar 

  • Schnepel J, Tschesche H (2000) The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J Protein Chem 19:685–692

    PubMed  CAS  Google Scholar 

  • Schwarzenberg M, Pippia P, Meloni MA, Cossu G, Cogoli-Greuter M, Cogoli A (1999) Signal transduction in T lymphocytes–a comparison of the data from space, the free fall machine and the random positioning machine. Adv Space Res 24:793–800

    PubMed  CAS  Google Scholar 

  • Sciola L, Cogoli-Greuter M, Cogoli A, Spano A, Pippia P (1999) Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv Space Res 24:801–805

    PubMed  CAS  Google Scholar 

  • Sheetz MP (2001) Cell control by membrane–cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    PubMed  CAS  Google Scholar 

  • Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    PubMed  CAS  Google Scholar 

  • Singh KP, Kumari R, Dumond JW (2010) Simulated microgravity-induced epigenetic changes in human lymphocytes. J Cell Biochem 111(1):123–129

    PubMed  CAS  Google Scholar 

  • Spisni E, Toni M, Strillacci A, Galleri G, Santi S, Griffoni C, Tomasi V (2006) Caveolae and caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human endothelial cells. Cell Biochem Biophys 46:155–164

    PubMed  CAS  Google Scholar 

  • Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen J, Wang N (2002) Cell prestress. II: contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624

    PubMed  CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    PubMed  CAS  Google Scholar 

  • Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL, Pierson DL (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65:179–186

    PubMed  CAS  Google Scholar 

  • Streb C, Richter P, Ntefidou M, Lebert M, Haeder DP (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862

    CAS  Google Scholar 

  • Studer M, Thiel C, Bradacs G, Engelmann F, Engeli S, Huerlimann E, Zeitner P, Ullrich O (2010) Parabolic maneuvers of the Swiss Air Force fighter jet Northrop F5-E as a new platform to identify rapid gravi-responsive mechanisms in cultured mammalian cells. Paper presented at the 61st International Astronautical Congress, IAC-10. A1.7.9, 27 Sep–01Oct 2010, Prague Czech Republic

    Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38:118–122

    PubMed  Google Scholar 

  • Tairbekov MG (1996) The role of signal systems in cell gravisensitivity. Adv Space Res 17:113–119

    PubMed  CAS  Google Scholar 

  • Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718

    PubMed  CAS  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    PubMed  CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M, Tagliafierro G, Strollo F (2002a) Microgravity-induced programmed cell death in astrocytes. J Gravit Physiol 9:P275–P276

    PubMed  CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M, Prato P, Passalacqua M, Giuliani M, Tagliafierro G, Strollo F (2002b) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934:132–139

    PubMed  CAS  Google Scholar 

  • Uva BM, Strollo F, Ricci F, Pastorino M, Mason JI, Masini MA (2005) Morpho-functional alterations in testicular and nervous cells submitted to modelled microgravity. J Endocrinol Invest 28:84–91

    PubMed  CAS  Google Scholar 

  • Verschueren H, van der Taelen I, Dewit J, De Braekeleer J, De Baetselier P, Aktories K, Just I (1995) Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur J Cell Biol 66:335–341

    PubMed  CAS  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    PubMed  CAS  Google Scholar 

  • Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436:115–118

    PubMed  CAS  Google Scholar 

  • Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194

    PubMed  CAS  Google Scholar 

  • Wang N, Naruse K, Stamenović D, Fredberg JJ, Mijailovich SM, Tolić-Nørrelykke IM, Polte T, Mannix R, Ingber DE (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98:7765–7770

    PubMed  CAS  Google Scholar 

  • Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616

    PubMed  CAS  Google Scholar 

  • Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support by the German Aerospace Center (DLR), Space Agency (grant no. 50WB0613 and no. 50WB0912) and ESA (ESTEC Contract nr 20562/07/NL/VJ ESA-CORA-GBF-2005-005). We also gratefully thank our collaboration ­partners DLR, ESA, EADS Astrium Space Transportation, NOVESPACE, the Swiss Air Force and the Deutsche Lufthansa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullrich, O., Thiel, C.S. (2012). Gravitational Force: Triggered Stress in Cells of the Immune System. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_14

Download citation

Publish with us

Policies and ethics