Closure Properties of Minimalist Derivation Tree Languages

  • Thomas Graf
Conference paper

DOI: 10.1007/978-3-642-22221-4_7

Volume 6736 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Graf T. (2011) Closure Properties of Minimalist Derivation Tree Languages. In: Pogodalla S., Prost JP. (eds) Logical Aspects of Computational Linguistics. LACL 2011. Lecture Notes in Computer Science, vol 6736. Springer, Berlin, Heidelberg

Abstract

Recently, the question has been raised whether the derivation tree languages of Minimalist grammars (MGs; [14, 16]) are closed under intersection with regular tree languages [4, 5]. Using a variation of a proof technique devised by Thatcher [17], I show that even though closure under intersection does not obtain, it holds for every MG and regular tree language that their intersection is identical to the derivation tree language of some MG modulo category labels. It immediately follows that the same closure property holds with respect to union, relative complement, and certain kinds of linear transductions. Moreover, enriching MGs with the ability to put regular constraints on the shape of their derivation trees does not increase the formalism’s weak generative capacity. This makes it straightforward to implement numerous linguistically motivated constraints on the Move operation.

Keywords

Minimalist Grammars Derivation Tree Languages Closure Properties Regular Tree Languages Derivational Constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Graf
    • 1
  1. 1.Department of LinguisticsUniversity of CaliforniaLos Angeles