Intensity Analysis of Surface Myoelectric Signals from Lower Limbs during Key Gait Phases by Wavelets in Time-Frequency

  • Jiangang Yang
  • Xuan Gao
  • Baikun Wan
  • Dong Ming
  • Xiaoman Cheng
  • Hongzhi Qi
  • Xingwei An
  • Long Chen
  • Shuang Qiu
  • Weijie Wang
Conference paper

DOI: 10.1007/978-3-642-21657-2_52

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6768)
Cite this paper as:
Yang J. et al. (2011) Intensity Analysis of Surface Myoelectric Signals from Lower Limbs during Key Gait Phases by Wavelets in Time-Frequency. In: Stephanidis C. (eds) Universal Access in Human-Computer Interaction. Applications and Services. UAHCI 2011. Lecture Notes in Computer Science, vol 6768. Springer, Berlin, Heidelberg

Abstract

This paper presented a time-frequency intensity analysis feature extraction approach of lower limb sEMG (Surface Electromyogram) to identify the key gait phases during walking. The proposed feature extraction method used a filter bank of non-linearly scaled wavelets with specified time-resolution to extract time-frequency aspects of the signal.The intensity analysis algorithm was tested on sEMG data collected from ten healthy young volunteers during 30 walking circles for each. Each walking cycle was made up of four key gait phases:L-DS(Left Double Stance), L-SS(Left Single Stance),R-DS(Right Double Stance),R-SS(Right Single Stance).The identification accuracy of 7 subjects using intensity analysis reached 97%, even up to 99.42%.The others were about 95%. The algorithm obviously achieved a higher accuracy of sEMG recognition than the other algorithms such as root mean square and AR Coefficient. In the future, the feature of sEMG signal under different key gait phases may be used in the control of Functional Electrical Stimulation (FES) and other intelligent artificial limbs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jiangang Yang
    • 1
  • Xuan Gao
    • 1
  • Baikun Wan
    • 1
  • Dong Ming
    • 1
  • Xiaoman Cheng
    • 2
  • Hongzhi Qi
    • 1
  • Xingwei An
    • 1
  • Long Chen
    • 1
  • Shuang Qiu
    • 1
  • Weijie Wang
    • 3
  1. 1.Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjinChina
  2. 2.School of ScienceTianjin University of TechnologyChina
  3. 3.Department of Orthopaedics and Traumatology, Ninewells HospitalUniversity of DundeeUK

Personalised recommendations