Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We present a robust secure methodology for computing functions that are represented as multivariate polynomials where parties hold different variables as private inputs. Our generic efficient protocols are fully black-box and employ threshold additive homomorphic encryption; they do not assume honest majority, yet are robust in detecting any misbehavior. We achieve solutions that take advantage of the algebraic structure of the polynomials, and are polynomial-time in all parameters (security parameter, polynomial size, polynomial degree, number of parties). We further exploit a “round table” communication paradigm to reduce the complexity in the number of parties.

A large collection of problems are naturally and efficiently represented as multivariate polynomials over a field or a ring: problems from linear algebra, statistics, logic, as well as operations on sets represented as polynomials. In particular, we present a new efficient solution to the multi-party set intersection problem, and a solution to a multi-party variant of the polynomial reconstruction problem.