Skip to main content

Universal Packet Routing with Arbitrary Bandwidths and Transit Times

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

We prove bounds for the length of optimal schedules for store-and-forward packet routing in the setting of arbitrary bandwidths and transit times. The problem is commonly studied only in the setting of unit bandwidths and unit transit times. Our results generalize the existing work to a much broader class of instances and also improve the known bounds significantly. For the case of unit transit times and bandwidths we improve the best known bound of 39(C + D) to 23.4(C + D), where C and D denote the trivial lower bounds congestion and dilation. If every link in the network has a certain minimum transit time or capacity our bounds improve even further up to 4.32(C + D). Key to our results is a framework which employs tight bounds for instances where each packet travels along only a small number of edges. Further insights for such instances would reduce our constants even more. This is the first improvement of the bounds for this very fundamental problem in more than 10 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-constrained scheduling of weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., Sitaraman, R., Rosenberg, A., Unger, W.: Scheduling time-constrained communication in linear networks. In: Proceedings of the 10th annual ACM symposium on Parallel Algorithms and Architectures (SPAA 1998), pp. 269–278 (1998)

    Google Scholar 

  3. Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct routing: Algorithms and complexity. Algorithmica 45, 45–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. di Ianni, M.: Efficient delay routing. Theoretical Computer Science 196, 131–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate storage. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms, SODA 2003 (2003)

    Google Scholar 

  6. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–1630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science 2719, 397–409 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Hall, A., Langkau, K., Skutella, M.: An FPTAS for quickest multicommodity flows with inflow-dependent transit times. Algorithmica 47, 299–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Meyer Auf Der Heide, F., Vocking, B.: Shortest paths routing in arbitrary networks. Journal of Algorithms 31, 105–131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25, 36–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koch, R., Peis, B., Skutella, M., Wiese, A.: Real-Time Message Routing and Scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 217–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in O(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leighton, F.T., Makedon, F., Tollis, I.G.: A 2n − 2 step algorithm for routing in an n ×n array with constant size queues. In: Proceedings of the 1st Annual Symposium on Parallel Algorithms and Architectures (SPAA 1989), pp. 328–335 (1989)

    Google Scholar 

  15. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Performance Analysis. CRC Press, Inc., Boca Raton (2004)

    MATH  Google Scholar 

  16. Mansour, Y., Patt-Shamir, B.: Many-to-one packet routing on grids. In: Proceedings of the 27th Annual Symposium on Theory of Computing (STOC 1995), pp. 258–267 (1995)

    Google Scholar 

  17. Ostrovsky, R., Rabani, Y.: Universal O(congestion + dilation + log1 + ε N) local control packet switching algorithms. In: Proceedings of the 29th annual ACM Symposium on Theory of Computing (STOC 1997), pp. 644–653 (1997)

    Google Scholar 

  18. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and Finite Sets Colloq. Math. Soc. Janos Bolyai, vol. 11, pp. 609–627. North-Holland, Amsterdam (1975)

    Google Scholar 

  19. Peis, B., Skutella, M., Wiese, A.: Packet routing: Complexity and algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Peis, B., Skutella, M., Wiese, A.: Packet routing on the grid. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 120–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Peis, B., Wiese, A.: Universal packet routing with arbitrary bandwidths and transit times. Technical Report 024-2010, Technische Universität Berlin (November 2010)

    Google Scholar 

  22. Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC 1996), pp. 366–375. ACM, New York (1996)

    Google Scholar 

  23. Rajasekaran, S.: Randomized algorithms for packet routing on the mesh. Technical Report MS-CIS-91-92, Dept. of Computer and Information Sciences, Univ. of Pennsylvania, Philadelphia, PA (1991)

    Google Scholar 

  24. Scheideler, C.: Universal Routing Strategies for Interconnection Networks. LNCS, vol. 1390, pp. 57–71 (1998)

    Google Scholar 

  25. Srinivasan, A., Teo, C.-P.: A constant-factor approximation algorithm for packet routing and balancing local vs. global criteria. SIAM Journal on Computing 30 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peis, B., Wiese, A. (2011). Universal Packet Routing with Arbitrary Bandwidths and Transit Times. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics