A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms

  • Tobias Wagner
  • Heike Trautmann
  • Luis Martí
Conference paper

DOI: 10.1007/978-3-642-19893-9_2

Volume 6576 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Wagner T., Trautmann H., Martí L. (2011) A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms. In: Takahashi R.H.C., Deb K., Wanner E.F., Greco S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg

Abstract

The use of multi-objective evolutionary algorithms for solving black-box problems with multiple conflicting objectives has become an important research area. However, when no gradient information is available, the examination of formal convergence or optimality criteria is often impossible. Thus, sophisticated heuristic online stopping criteria (OSC) have recently become subject of intensive research. In order to establish formal guidelines for a systematic research, we present a taxonomy of OSC in this paper. We integrate the known approaches within the taxonomy and discuss them by extracting their building blocks. The formal structure of the taxonomy is used as a basis for the implementation of a comprehensive MATLAB toolbox. Both contributions, the formal taxonomy and the MATLAB implementation, provide a framework for the analysis and evaluation of existing and new OSC approaches.

Keywords

Convergence Detection Multi-Objective Optimization Performance Indicators Performance Assessment Termination Criterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Wagner
    • 1
  • Heike Trautmann
    • 2
  • Luis Martí
    • 3
  1. 1.Institute of Machining Technology (ISF)TU DortmundDortmundGermany
  2. 2.Department of Computational StatisticsTU DortmundDortmundGermany
  3. 3.Group of Applied Artificial IntelligenceUniversidad Carlos III de MadridMadridSpain