Software Language Engineering

Volume 6563 of the series Lecture Notes in Computer Science pp 42-61

Modelling GLL Parser Implementations

  • Adrian JohnstoneAffiliated withRoyal Holloway, University of London
  • , Elizabeth ScottAffiliated withRoyal Holloway, University of London

* Final gross prices may vary according to local VAT.

Get Access


We describe the development of space-efficient implementations of GLL parsers, and the process by which we refine a set-theoretic model of the algorithm into a practical parser generator that creates practical parsers. GLL parsers are recursive descent-like, in that the structure of the parser’s code closely mirrors the grammar rules, and so grammars (and their parsers) may be debugged by tracing the running parser in a debugger. While GLL recognisers are straightforward to describe, full GLL parsers present technical traps and challenges for the unwary. In particular, naïve implementations based closely on the theoretical description of GLL can result in data structures that are not practical for grammars for real programming language grammars such as ANSI-C. We develop an equivalent formulation of the algorithm as a high-level set-theoretic model supported by table-based indices, in order to then explore a set of alternative implementations which trade space for time in ways which preserve the cubic bound.


GLL parsing general context-free parsing implementation spaces time-space tradeoffs