The Complexity Status of Problems Related to Sparsest Cuts

  • Paul Bonsma
  • Hajo Broersma
  • Viresh Patel
  • Artem Pyatkin
Conference paper

DOI: 10.1007/978-3-642-19222-7_14

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)
Cite this paper as:
Bonsma P., Broersma H., Patel V., Pyatkin A. (2011) The Complexity Status of Problems Related to Sparsest Cuts. In: Iliopoulos C.S., Smyth W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg

Abstract

Given an undirected graph G = (V,E) with a capacity function \(w : E \longrightarrow \mathbb{Z}^+\) on the edges, the sparsest cut problem is to find a vertex subset S ⊂ V minimizing ∑ e ∈ E(S,V ∖ S)w(e)/(|S||V ∖ S|). This problem is NP-hard. The proof can be found in [16]. In the case of unit capacities (i. e. if w(e) = 1 for every e ∈ E) the problem is to minimize |E(S,V ∖ S)|/(|S||V ∖ S|) over all subsets S ⊂ V. While this variant of the sparsest cut problem is often assumed to be NP-hard, this note contains the first proof of this fact. We also prove that the problem is polynomially solvable for graphs of bounded treewidth.

Keywords

NP-hardness sparsest cut densest cut MSSC bounded treewidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul Bonsma
    • 1
  • Hajo Broersma
    • 2
  • Viresh Patel
    • 2
  • Artem Pyatkin
    • 2
  1. 1.Computer Science DepartmentHumboldt Universität zu BerlinBerlinGermany
  2. 2.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamU.K.

Personalised recommendations