Skip to main content

Parameterized Algorithms for the Independent Set Problem in Some Hereditary Graph Classes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Abstract

The maximum independent set problem is NP-complete for graphs in general, but becomes solvable in polynomial time when restricted to graphs in many special classes. The problem is also intractable from a parameterized point of view. However, very little is known about parameterized complexity of the problem in restricted graph classes. In the present paper, we analyse two techniques that have previously been used to solve the problem in polynomial time for graphs in particular classes and apply these techniques to develop fpt-algorithms for graphs in some classes where the problem remains NP-complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1-3), 3–16 (2004)

    Article  Google Scholar 

  2. Alekseev, V.E., Lozin, V.V.: Augmenting graphs for independent sets. Discrete Appl. Math. 145(1), 3–10 (2004)

    Article  MATH  Google Scholar 

  3. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 43(9), 842–844 (1957)

    Article  MATH  Google Scholar 

  4. Boliac, R., Lozin, V.V.: An augmenting graph approach to the stable set problem in P 5-free graphs. Discrete Appl. Math. 131(3), 567–575 (2003)

    Article  MATH  Google Scholar 

  5. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight stable set problem. Theoret. Comput. Sci. 389(1-2), 295–306 (2007)

    MATH  Google Scholar 

  6. Corneil, D., Habib, M., Paul, C., Tedder, M.: Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)

    Article  MATH  Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors. Algorithmica 41(4), 245–267 (2005)

    Article  MATH  Google Scholar 

  9. Denley, T.: The independence number of graphs with large odd girth. Electron. J. Comb. 1, R9 (1994)

    Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17, 449–467 (1965)

    Article  MATH  Google Scholar 

  12. Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditary for 2-structures. Theoret. Comput. Sci. 70(3), 343–358 (1990)

    MATH  Google Scholar 

  13. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoret. Comput. Sci. 410(1), 53–61 (2009)

    MATH  Google Scholar 

  14. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MATH  Google Scholar 

  16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  17. Habib, M., Maurer, M.C.: On the X-join decomposition for undirected graphs. Discrete Appl. Math. 1(3), 201–207 (1979)

    Article  MATH  Google Scholar 

  18. Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the Sixth SAIM-ACM Symposium on Discrete Algorithms, San Francisco, CA, pp. 160–169 (1995)

    Google Scholar 

  19. Kára, J., Kratochvíl, J.: Fixed parameter tractability of Independent Set in segment intersection graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 166–174. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Lozin, V.V.: Parameterized complexity of the maximum independent set problem and the speed of hereditary properties. Electronic Notes in Discrete Mathematics 34, 127–131 (2009)

    Article  MATH  Google Scholar 

  21. Lozin, V.V.: Stability preserving transformations of graphs. Annals of Operations Research (to appear) doi: 10.1007/s10479-008-0395-1

    Google Scholar 

  22. Lozin, V.V., Milanič, M.: On finding augmenting graphs. Discrete Appl. Math. 156(13), 2517–2529 (2008)

    Article  MATH  Google Scholar 

  23. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1-3), 189–241 (1999)

    Article  MATH  Google Scholar 

  24. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Combin. Theory Ser. B 28(3), 284–304 (1980)

    Article  MATH  Google Scholar 

  25. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Orders, pp. 41–101. D. Reidel, Boston (1985)

    Chapter  Google Scholar 

  26. Mosca, R.: Stable sets in certain P 6-free graphs. Discrete Appl. Math. 92(2-3), 177–191 (1999)

    Article  MATH  Google Scholar 

  27. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete Appl. Math. 35(2), 167–170 (1992)

    Article  MATH  Google Scholar 

  28. Olariu, S.: On the homogeneous representations of interval graphs. J. Graph Theory 15(1), 65–80 (1991)

    Article  MATH  Google Scholar 

  29. Raman, V., Saurabh, S.: Triangles, 4-Cycles and Parameterized \(\mbox{(In-)Tractability}\). In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 304–315. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Rao, M.: Solving some NP-complete problems using split decomposition. Discrete Appl. Math. 156(14), 2768–2780 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D. (2011). Parameterized Algorithms for the Independent Set Problem in Some Hereditary Graph Classes. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics