Skip to main content

Towards Organic Active Vision Systems for Visual Surveillance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6566))

Abstract

Vision systems are camera networks, which perform computer vision using multiple cameras. Due to the directional characteristic of the image sensor, it is not feasible to observe large surveillance areas using stationary cameras. This drawback can be overcome by using active vision (AcVi) systems consisting of mobile cameras (called AcVi nodes), which are reconfigurable in both position and orientation. In case of a dynamic environment with moving targets, AcVi nodes can be repositioned during runtime in order to fulfill the overall observation objectives.

This paper is devoted to develop a generalized system architecture for AcVi systems in multi-target environments. Based on this architecture, we present a coordination mechanism making way for self-organization - a major paradigm of Organic Computing - in such systems. Our algorithm enables AcVi nodes to observe an area under surveillance by using their mobility. In contrast to stationary vision systems, only a fraction of the amount of nodes is needed to achieve the same observation quality. The algorithm has been evaluated by simulation with up to 10 nodes as used for example for surveillance scenarios. Results show that our coordination algorithm is able to cope with large numbers of nodes and targets and is robust towards real world disturbances like communication failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmeck, H.: Organic computing-vision and challenge for system design. In: PARELEC, p. 3 (2004)

    Google Scholar 

  2. Hengstler, S., Aghajan, H.: A Smart Camera Mote Architecture for Distributed Intelligent Surveillance. In: Working Notes of the International Workshop on Distributed Smart Cameras, DSC (2006)

    Google Scholar 

  3. Swain, M.J., Stricker, M.A.: Promising directions in active vision, vol. 11(2), pp. 109–126 (October 1993)

    Google Scholar 

  4. Matsuyama, T., Wada, T., Tokai, S.: Active image capturing and dynamic scene visualization by cooperative distributed vision. In: Nishio, S., Kishino, F. (eds.) AMCP 1998. LNCS, vol. 1554, pp. 252–288. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bakhtari, A., Mackay, M., Benhabib, B.: Active-vision for the autonomous surveillance of dynamic, multi-object environments. Journal of Intelligent & Robotic Systems 54, 567–593 (2009), 10.1007/s10846-008-9247-0

    Article  MATH  Google Scholar 

  6. Horling, B., Vincent, R., Mailler, R., Shen, J., Becker, R., Rawlins, K., Lesser, V.: Distributed sensor network for real time tracking. In: AGENTS 2001: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 417–424. ACM, New York (2001)

    Chapter  Google Scholar 

  7. Spletzer, J.R., Taylor, C.J.: Dynamic sensor planning and control for optimally tracking targets. I. J. Robotic Res. 22(1), 7–20 (2003)

    Article  Google Scholar 

  8. Kamel, M., Hodge, L.: A coordination mechanism for model-based multi-sensor planning, pp. 709–714 (2002)

    Google Scholar 

  9. Zhou, H., Sakane, S.: Sensor planning for mobile robot localization using bayesian network representation and inference, vol. 1, pp. 440–446 (2002)

    Google Scholar 

  10. Naish, M.D., Croft, E.A., Benhabib, B.: Coordinated dispatching of proximity sensors for the surveillance of maneuvering targets, vol. 19(3), pp. 283–299 (2003)

    Google Scholar 

  11. Trucco, E., Umasuthan, M., Wallace, A.M., Roberto, V.: Model-based planning of optimal sensor placements for inspection. IEEE Transactions on Robotics and Automation 13(2), 182–194 (1997)

    Article  Google Scholar 

  12. Darrell, T., Pentland, A.P.: Attention-driven expression and gesture analysis in an interactive environment, pp. 135–140 (1995)

    Google Scholar 

  13. Goodridge, S.G., Luo, R.C., Kay, M.G.: Multi-layered fuzzy behavior fusion for real-time control systems with many sensors, vol. 43(3), pp. 387–394 (1996)

    Google Scholar 

  14. Savvides, A., Han, C.-C., Strivastava, M.B.: Dynamic fine- grained localization in ad-hoc networks of sensors. In: MobiCom 2001: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 166–179. ACM, New York (2001)

    Google Scholar 

  15. Kotanen, A., Hannikainen, M., Leppakoski, H., Hamalainen, T.D.: Positioning with ieee 802.11b wireless lan, vol. 3, pp. 2218–2222 (September 2003)

    Google Scholar 

  16. Casbeer, D.W., Kingston, D.B., Beard, A.W., Mclain, T.W., Li, S.-M., Mehra, R.: Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Sciences 37, 360 (2006)

    Article  MATH  Google Scholar 

  17. Hoffmann, M., Wittke, M., Bernard, Y., Soleymani, R., Hahner, J.: Dmctrac: Distributed multi camera tracking, pp. 1–10 (2008)

    Google Scholar 

  18. Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig, S., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Robotics: Science and Systems, pp. 343–350 (2005)

    Google Scholar 

  19. Lagoudakis, M.G., Berhault, M., Koenig, S., Keskinocak, P., Kleywegt, A.J.: Simple auctions with performance guarantees for multi-robot task allocation. In: Intelligent Robots and Systems, pp. 698–705 (2004)

    Google Scholar 

  20. NS2, The network simulator, http://nsnam.isi.edu/nsnam/index.php/ [Online; accessed 25-September-2010]

  21. Hara, T.: Effective replica allocation in ad hoc networks for improving data accessibility. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, pp. 1568–1576 (2001)

    Google Scholar 

  22. Keleher, P.J., Cetintemel, U.: Consistency management in deno. Mobile Networks and Applications 5(4), 299–309 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wittke, M., Grenz, C., Hähner, J. (2011). Towards Organic Active Vision Systems for Visual Surveillance. In: Berekovic, M., Fornaciari, W., Brinkschulte, U., Silvano, C. (eds) Architecture of Computing Systems - ARCS 2011. ARCS 2011. Lecture Notes in Computer Science, vol 6566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19137-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19137-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19136-7

  • Online ISBN: 978-3-642-19137-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics