Date: 05 Jul 2011

Monolithic Single-Photon Avalanche Diodes: SPADs

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The art of creating monolithic single-photon photodetectors is a mix of design skills and device physics knowledge, and it requires an understanding of the mechanisms underlying single-photon detection in highly complex integrated systems. This chapter begins with the fundamentals of avalanching, the basics for integration of avalanche photodiodes operating in Geiger-mode, and the issues associated with large arrays. We outline the techniques that made it possible to integrate single-photon detectors in standard CMOS processes, and to design compact ancillary electronics for operating and reading pixels based on these devices. Finally, we present a description of several readout architectures designed for massive arrays of single-photon detectors. A discussion of future trends in the context of the most advanced applications in various fields of research concludes this chapter. The art of creating monolithic single-photon photodetectors is a mix of design skills and device physics knowledge, and it requires an understanding of the mechanisms underlying single-photon detection in highly complex integrated systems. This chapter begins with the fundamentals of avalanching, the basics for integration of avalanche photodiodes operating in Geiger-mode, and the issues associated with large arrays. We outline the techniques that made it possible to integrate single-photon detectors in standard CMOS processes, and to design compact ancillary electronics for operating and reading pixels based on these devices. Finally, we present a description of several readout architectures designed for massive arrays of single-photon detectors. A discussion of future trends in the context of the most advanced applications in various fields of research concludes this chapter.